IACHEC: International Astronomical Consortium for High Energy Calibration

Defining High Energy Calibration Standards and Procedures

Herman L. Marshall
(MIT Kavli Institute, Chandra Science Center)
IACHEC Overview

- Annual international meetings (since 2006)
 - Started by 2 largest X-ray groups (Chandra & XMM)
 - Support comes from projects (XMM, Suzaku, etc.)
 - Most recent meeting: Avigliano Umbro, Italy (April 2018)

- Meetings involve work!
 - Several half-days for working group sessions
 - Telecons between meetings maintain progress

- All major X- & gamma-ray missions represented

- 35-50 attendees/meeting, most give talks

- 12 papers published since 2008

- URL: http://web.mit.edu/iachec/ with Wiki
What IACHEC Does

- Reviews ground calibration plans for new missions
 - Upcoming: IXPE, Athena
- Reviews flight calibration plans and results
 - Investigate optics and detector physics
 - Examine methods, systematic errors
- Define new calibration standards
 - Characterize sources physically
 - Compare results from different missions
 - Publish results
- Arrange coordinated observations
- Consider infrastructure: statistics, archives
Working Groups

- **Methods**
 - Background (particles, “space weather”, cosmic sources)
 - Detectors (CCDs, calorimeters, proportional counters...)
 - Coordinated observations
 - Emission line identifications, wavelengths
 - Statistics

- **Sources**
 - Clusters of galaxies
 - Nonthermal SNR (e.g. Crab)
 - Thermal SNR
 - WDs and isolated neutron stars
Examples — 1

- Galaxy clusters = hot gas balls
- Measured kT with 2 telescopes
- Validated XMM (pn) kTs with Fe line flux ratios
- Fixed Chandra optics model
- Project started at 2nd IACHEC meeting

See also Schellenberger+ 2015, A&A, 575, 30
Examples — 2

- Joint observations of an AGN
- Technical issues:
 - only joint times
 - fluxes from PL fits in narrow bands
 - relative to joint fit
- Published as an IACHEC project
- Elucidated instrument differences

Ishida et al. 2011, PASJ, 63, S657.
Examples — 2

- Joint observations of an AGN
- Technical issues:
 - only joint times
 - fluxes from PL fits in narrow bands
 - relative to joint fit
- Published as an IACHEC project
- Elucidated instrument differences

Ishida et al. 2011, PASJ, 63, S657.

Examples — 3

- Thermal SNR group: results for iE0102-7219
- Spectrum is simple, stable
- Set reference fluxes
- Provides comparison of instruments

Examples — 4

- Fluxes in bands compared
- XMM (top) and Chandra (bottom)
- Simultaneous observations used
- IACHEC paper in progress

Smith, Stuhlinger, Guainazzi, Marshall, in prep.
Examples — 5

- Encode systematic error estimates in ensemble of cal files
- Fit model to data using each cal file set
 - Markov Chain Monte Carlo enables process
 - Populate parameter space with viable solutions
- Examine distributions of parameters
- Implemented for Chandra: pyBloCXs

See http://hea-www.harvard.edu/AstroStat/pyBLoCXS/
Examples — 6+

- For NICER: coordinating new observations of 3C 273 with Chandra, XMM, NuSTAR, AstroSat
- Study of N132D, an SNR in LMC
- Use of HZ 43, Sirius B, & PKS 2155-304 to correct QE of spectrometer on Chandra
- Use of RX J1856, 1E0102, and Mk 421 to measure contamination, compared to Suzaku
- Switch over to ML statistics (e.g. cstat from χ^2)
- Posting and maintaining wiki pages for data, results
- Concordance: suggesting changes to EAs
New Work on Coordinated Data

- Generally:
 - One person leads, collects GTIs, computes overlaps
 - Rest use overlap GTIs and provide spectra

- 2015, ’16, ’17 3C 273 with NuSTAR+; KKM will coordinate
- 2018 3C 273 with NICER+; CM will coordinate

- Others (with analysis lead):
 - GX 13+1: NSS
 - MAXI J1820: EJ
 - Capella: VK & JeKa from many years
 - Her X-1: PK (XMM) lead
Concordance

- Answer to “How to change effective areas given many observations by different instruments differ?”
- Method: Multiplicative Shrinkage (Chen+ 2019)
 - uses all data to find best true fluxes, then correct EAs
 - needs \(\tau \) values, fractional uncertainties on prior EA
 - if ground-cal is poor (large \(\tau \)), observations drive new EA
 - if observations are poor (large \(\sigma \)), prior dominates
- Developed jointly with statistics academicians
- IACHEC scientists set \(\tau \) values
- Working on new cross-cal data sets (Marshall+ 2019)
The Matrix (excerpt)

<table>
<thead>
<tr>
<th>Energy Range (keV)</th>
<th>Chandra ACIS</th>
<th>Chandra HETGS</th>
<th>Chandra LETGS</th>
<th>XMM pn</th>
<th>XMM MOS1,2</th>
<th>ROSAT PSPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15-0.33</td>
<td>3</td>
<td>-</td>
<td>5</td>
<td>2</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>0.33-0.54</td>
<td>3</td>
<td>-</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.54-0.8</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>0.8-1.2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>1.2-1.8</td>
<td>2.6</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>1.8-2.2</td>
<td>3.3</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>2.2-3.5</td>
<td>3.3</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>3.5-5.5</td>
<td>4.9</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>5.5-10</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Supporting Cross Calibration

1. Publish ground-cal data; acknowledge model deviations
2. Observe non-varying ‘standards’ (e.g. 1E0102, A1795)
3. Coordinate observations of simple targets (e.g. 3C 273)
4. Facilitate coordinated observations by users
5. Take in-flight cal observations more often than needed
6. Estimate ground-cal uncertainties (τ values) on EA
 a. Try physical uncertainties first (in edge depths, geom. area...)
 b. Determine τ in different energy bands (see τ table)
7. Adopt IACHEC ‘best practices’ (e.g. Cstat, BG model)
8. Send representatives to IACHEC meetings!

H. L. Marshall — Cross-Cal May 17, 2019