

Paul Plucinsky on behalf of the IACHEC Thermal SNR Working Group

Paul Plucinsky

Thermal SNR Working Group

One of the "Standard candle" working groups. This presentation is a summary report of this group's work:

XMM-Newton	Andy Pollock, Matteo Guainazzi, Martin Stuhlinger (ESAC)
Chandra HETG	Dan Dewey (MIT)
XMM-Newton MOS	Steve Sembay (Leicester)
XMM-Newton pn	Frank Haberl (MPE)
Chandra ACIS	Jenny Posson-Brown & Paul Plucinsky (SAO)
Suzaku XIS	Eric Miller (MIT)
Swift XRT	Andrew Beardmore (Leicester)
Models	Adam Foster & Randall Smith (SAO)

Previous work published in 2 SPIE papers: Plucinsky et al. 2008 SPIE Plucinsky et al. 2012 SPIE

E0102: X-ray brightest in the SMC 0.77X0.77 arcmin, 13X13 pc $t \sim 1,000$ yr (Hughes et al. 2001) $L_X(0.3-10.0 \text{ kev}) = 2.5 \times 10^{37} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

ACIS 0.35-8.0 keV

N132D: X-ray brightest in the LMC 1.7X2.3 arcmin, 25x33.5 pc $t \sim 3,000$ yr (Morse et al. 1996) $L_X(0.3-10.0 \text{ kev}) = 1.0x10^{38} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

ACIS 0.35-8.0 keV

Paul Plucinsky

E0102: X-ray brightest in the SMC 0.77X0.77 arcmin, 13X13 pc $t \sim 1,000$ yr (Hughes et al. 2001) $L_X(0.3-10.0 \text{ kev}) = 2.5 \times 10^{37} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

Red (0.3-0.5 keV), Green (0.5-0.75 keV) Blue (0.75 – 7.0 keV)

N132D: X-ray brightest in the LMC 1.7X2.3 arcmin, 25x33.5 pc $t \sim 3,000$ yr (Morse et al. 1996) $L_X(0.3-10.0 \text{ kev}) = 1.0x10^{38} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

CXC

ACIS 0.35-8.0 keV

IACHEC 2014

E0102: X-ray brightest in the SMC 0.77X0.77 arcmin, 13X13 pc $t \sim 1,000$ yr (Hughes et al. 2001) $L_X(0.3-10.0 \text{ kev}) = 2.5 \times 10^{37} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

Red (0.3-0.5 keV), Green (0.5-0.75 keV) Blue (0.75 – 7.0 keV) N132D: X-ray brightest in the LMC 1.7X2.3 arcmin, 25x33.5 pc $t \sim 3,000$ yr (Morse et al. 1996) $L_X(0.3-10.0 \text{ kev}) = 1.0x10^{38} \text{ ergs s}^{-1}$ no compact object "O-rich" core-collapse SNR

CXC

IACHEC 2014

Red (0.3-0.75 keV), Green (0.8-1.1 keV), Blue (1.1 – 2.0 keV)

RGS Spectra of E0102 & N132D

RGS Spectra of E0102 & N132D

RGS Spectra of E0102 & N132D

Time Dependence ACIS

CXC

IACHEC 2014

Time Dependence XIS

Miller (MIT)

14

IACHEC 2014

N132D Spectral Model Compared to ACIS/HETG 0th Order

N132D: OBSID 1828, ACIS/HETG, overplot IACHEC v2.6 model

CXC

N132D Spectral Model Compared to MOS

MOS1 0083 Cstat=1641.2/1291 Global=1.164

N132D Spectral Model Compared to XIS1

N132D Spectral Model Compared to XIS3

N132D Spectral Model Compared to XRT

<u>Summary</u>

<u>E0102</u>

- new A&A paper is under development
- present line norms with latest calibrations
- present time dependence for each instrument <u>N132D</u>
- initial comparison of model based on pn/RGS data was discouraging
- ACIS ~27% higher in soft band for ACIS/HETG 0th order
- MOS ~16% higher in most of the band
- XIS1 ~14% & XIS3 ~7% higher in most of band
- XRT agrees well with pn/RGS model

СХС

