

XMM-Newton — Chandra Blazar Flux Comparison

M.J.S. Smith (ESAC) & H. Marshall (MIT)

6th IACHEC, April 2011

Blazar Sample

Objective: Comparison of XMM-Newton — Chandra fluxes in various bands.

For this we're using a sample of Blazars: PKS 2155-304, 3C 273 and H 1426+428

- Relatively simple spectra overall; (absorbed) power laws in narrow bands.
- Flux covers the 0.1 10.0 keV band.
- Bright
 - > piled in EPIC -> PSF core excision introduces added uncertainty in flux determination
- Variable, even within observation timescale
 - > require XMM / Chandra / ... coordinated observations
 - > simultaneous GTIs across instruments
 - > need to use normalised fluxes to compare between observations

16 coordinated XMM-Newton / Chandra observations, resulting in 31 strictly simultaneous GTIs for flux comparison.

Instruments being compared are: EPIC, RGS, ACISS-L/HETG, HRCS-LETG

Data reduction:	
Use latest publicly available s/w and	calibration files
• SAS 11.0 + CCFs as of March 2011	

• CIAO 4.3 + CALDB 4.4.2

Spectral fitting:

- Per band, fit an absorbed power-law (nH fixed) and determine the model flux
- · Fit instruments independently
- Chandra + / grating orders jointly fit
- Use orders 1 10 to create HRC LETG response

> PKS 2155-304: 1.42 × 10²⁰ cm⁻²
> 3C 273: 1.79 × 10²⁰ cm⁻²
> H 1426+428: 1.36 × 10²⁰ cm⁻²

Energy bands are those used originally in the XMM-Newton Cross Cal Archive:

- 0.15 0.33 keV (Lower EPIC bound Lower RGS bound)
- 0.33 0.54 keV (Up to the O-edge)
- 0.54 0.85 keV (O-VII, O-VIII)
- 0.85 1.50 keV (Ne-IX, Ne-X)
- 1.50 4.00 keV
- 4.00 10.0 keV

Analysis Details (II)

Systematic uncertainties:

Pile-up:

EPIC requires excision of PSF core: use source extraction annuli.

- > Per observation: for both MOSs use the largest common outer radius within window, and a common inner radius.
- > However, radii vary from observation to observation, and are generally different from the PN radii.

Differing annuli may introduce systematic uncertainties due to imperfect EE correction and RMF weighting.

PN background:

Extracted from regions within the small window: some degree of source contamination.

Fit statistic:

Chi² and C-Statistic (Cash) yield different results, up to several percent for flux measurements.

XMM-Newton

Normalise fluxes within simultaneous exposures (GTIs) to compare instruments across observations:

Preferably the same benchmark across all GTIs and bands.

- PN & MOS: when in TI mode no useful data in the lowest energy band
- RGS: no data in the lower or higher bands
- Chandra instrument configurations vary from exposure to exposure
- Use as reference the Joint Fit Flux of all instruments in use in a particular exposure.

For 31 GTIs and 6 energy bands: a total of > 1200 derived flux values.

Results

Compare current results:

> SAS 11.0

> CIAO 4.3 + CALDB 4.4.2

With results presented at the previous IACHEC (April '10):

> SAS 9.0

> CIAO 4.2 + CALDB 4.2.0

Main changes which affect flux comparisons:

> Calibration:

- > Refinement of PN redistribution
- > New MOS spatial and time dependent redistribution
- > RGS effective area with exponential contamination model
- > New LSF parameters for the ACISS-LETG
- > Updated LETG grating high order efficiencies (2-7)

> Data: an additional PKS2155-304 coordinated observation performed in May 2010

"Old"

Results

0.33 - 0.54 keV Old

0.33 - 0.54 keV New

0.33 - 0.54 keV New

0.54 - 0.85 keV Old

0.54 - 0.85 keV New

0.85 - 1.50 keV Old

0.85 - 1.50 keV New

1.50 - 4.00 keV Old

1.50 - 4.00 keV New

4.00 - 10.0 keV Old

4.00 - 10.0 keV New

Mean Relative Flux

Table 3. Relative flux among soft-band instruments^a.

20		A							
		ACIS-S3	XIS0	XIS1	XIS3	XRT	MOS1	MOS2	pn
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ACIS-S3	0.00	$\textbf{7.49} \pm \textbf{0.62}$	$5.60 \pm 0.60$	$6.88 \pm 0.62$	$\textbf{7.75} \pm \textbf{0.86}$	$10.26\pm0.60$	$12.05\pm0.61$	$17.76\pm0.47$
В	XIS0	$-7.49 \pm 0.62$	0.00	$-1.89 \pm 0.74$	$-0.60 \pm 0.75$	$0.27 \pm 0.96$	$\textbf{2.78} \pm \textbf{0.74}$	$\textbf{4.57} \pm \textbf{0.75}$	$10.28\pm0.64$
	XIS1	$-5.60\pm0.60$	$1.89 \pm 0.74$	0.00	$1.28 \pm 0.74$	$2.15 \pm 0.95$	$4.66 \pm 0.73$	$6.45 \pm 0.73$	$12.16\pm0.62$
	XIS3	$-6.88\pm0.62$	$0.60 \pm 0.75$	$-1.28 \pm 0.74$	0.00	$0.87 \pm 0.96$	$\textbf{3.38} \pm \textbf{0.74}$	$\textbf{5.17} \pm \textbf{0.74}$	$10.88\pm0.63$
	XRT	$-7.75 \pm 0.86$	$-0.27 \pm 0.96$	$-2.15 \pm 0.95$	$-0.87 \pm 0.96$	0.00	$2.51\pm0.95$	$\textbf{4.30} \pm \textbf{0.96}$	$10.01 \pm 0.87$
	MOS1	$-10.26\pm0.60$	$-2.78\pm0.74$	$-4.66\pm0.73$	$-3.38\pm0.74$	$-2.51 \pm 0.95$	0.00	$1.79\pm0.73$	$\textbf{7.50} \pm \textbf{0.62}$
	MOS2	$-12.05 \pm 0.61$	$-4.57\pm0.75$	$-6.45\pm0.73$	$-5.17\pm0.74$	$-4.30\pm0.96$	$-1.79 \pm 0.73$	0.00	$5.71 \pm 0.63$
	pn	$-17.76\pm0.47$	$-10.28\pm0.64$	$-12.16\pm0.62$	$-10.88\pm0.63$	$-10.01\pm0.87$	$-7.50\pm0.62$	$-5.71\pm0.63$	0.00

Notes. ^(a) The logarithmic flux ratio  $100 \times \ln \left( F_X^{(B)} / F_X^{(A)} \right)$  between the soft-band instruments A and B. The flux is measured in the 2.0–8.0 keV

band. The range indicates the convolved statistical uncertainty derived as  $100 \times \sqrt{\left(\frac{\Delta F_X^{(A)}}{F_X^{(A)}}\right)^2 + \left(\frac{\Delta F_X^{(B)}}{F_X^{(B)}}\right)^2}$ . Both the ratio and its deviation are multiplied

by 100 to save space. The uncertainties  $\Delta F_X^{(A)}$  and  $\Delta F_X^{(B)}$  are the mean of the  $1\sigma$  statistical uncertainties in the upper and lower bound directions (Table 2). The bold face indicates that the difference is larger than 3 times the convolved statistical uncertainty.

M. Tsujimoto et al., A&A 525, A25 (2011)

- Soft band fluxes derived in the 2 8 keV band
- Chandra fluxes derived from ACIS-S3 chip
- Calibration files: Aug 2010 CCFs for XMM, CALDB 4.2 for Chandra





• Flux comparison method fails in band 0.15 - 0.33 keV, due to bad EPIC fits.

• XMM-Newton:

- > RGS flux time dependence has been corrected
- > PN, MOS2 and RGS consistent within 5% in 0.54 0.85 keV band.
- > Diverging trend towards higher energies, with RGS down 5% w.r.t. PN, and MOS up 5-7% w.r.t. PN
- Chandra:
  - > ACISS-LETG shows significant flux deficit in the 0.33 0.54 band since May 2009
  - > Fluxes show a trend: 0-10% deficit w.r.t. joint-fit flux below ~ 1 keV and a 0-10% excess above 1 keV
- Where comparable, blazar results are consistent with Tsujimoto-san G21.5-0.9 results.

