Calibration,

Systematic Errors, and AstroStatistics

Vinay Kashyap
CXC/SAO
CHASC

we need statistics because we want error bars

"Four score plus-or-minus seven years ago ..."

- Abraham Lincoln
(Gettysburg address first draft)

Outline

I. Statistics as a black box: the promise and perils of χ^{2} and model fitting
II. Bayesian probabilities: conceptual clarity vs computational complexity
III. Systematic errors: if you can't beat 'em, join 'em

"The only thing we have to chisquare is chisquare itself."

- Franklin D. Roosevelt (after the stock market went downhill like a simplex)

χ^{2}

- the statistic vs the goodness-of-fit
- you can always use the statistic; it is the interpretation that is tricky

statistic vs goodness-of-fit

$$
\chi^{2}=\sum_{i}\left(D_{i}-M_{i}\right) / \sigma_{i}^{2} \equiv-2 \ln \mathscr{L}_{G}
$$

$$
\mathrm{p}\left(\chi^{2} \mid v\right)=\gamma\left(\chi^{2} ; v / 2,1 / 2\right) ; \text { mean }=v ; \text { variance }=2 v
$$

χ^{2}

- the statistic vs the goodness-of-fit
- you can always use the statistic; it is the interpretation that is tricky
- reduced χ^{2}
- $\chi^{2} \sim v \pm \sqrt{ } 2 v$
- if errors are incorrect, or deviations are nonlinear, or bins are not independent, the χ^{2} statistic is not distributed as the χ^{2} distribution

scary plot \#1: bias

Poisson likelihood and cstat

- $\mathscr{L}_{P}=\Pi_{i} M_{i}^{D_{i}} e^{-M_{i}} / \Gamma\left(D_{i}\right)$
- $-2 \ln \mathscr{L}_{p}=2 \sum_{i}\left(\left(M_{i}-D_{i}\right)+D_{i}\left(\ln D_{i}-\ln M_{i}\right)\right)$

issues with fitting: convergence

"Are we there yet?"

scary plot \#2: stopping rule

issues with fitting: binning

"To bin, or not to bin. That is the question."

- Hamlet, Prince of Denmark
(he eventually decided to bin. what a tragedy.)

scary plot \#3: binning

issues with fitting: model comparison

"Is that a spectral line I see before my eyes? Come, let me flux thee."

- MacBeth,Thane of Glamis (soon realizes he may have gotten a best-fit, but not necessarily a good fit.)

scary plot \#4: F-test

narrow emission line

broad emission line broad absorption line at nominal 5%

alleviation

- Avoid binning as much as possible
- Use data-appropriate statistics, e.g., Cash or cstat with Poisson counts
- if there is no help for it, calibrate the statistic
- Avoid subtracting the background, model it instead
- fit in multiple iterative steps, nudging solution to peak of likelihood surface
- Use MCMC to explore parameter space

II. Bayesian Statistics or as we should say, Laplacian Statistics

"Are you feeling lucky, punk?"

- Dirty Harry
(little known fact: the Rev.Bayes kept a 44 gauge shotgun)

II. Bayesian Statistics or as we should say, Laplacian Statistics

- probability vs ensembles
- a priori and conditional probability
- Bayes'Theorem
- MCMC

frequentist vs Bayesian

- the data are fixed, and the parameters have uncertainties (data are not ensembles resulting from true fixed parameter)
- uncertainty is range in parameter values that encompasses a certain probability (unlike confidence interval that overlaps true value a certain fraction of the time)
- prior assumptions are explicit, and probability distributions can be daisy chained

probability calculus

$$
\begin{array}{r}
\text { "ALEA JACTA EST"' } \\
\text {-GAIUS IULIUS CAESAR } \\
\text { (the theory of conditional probabilities goes back } 2060 \text { years) }
\end{array}
$$

probability calculus

- jargon: $p(\theta), p(\theta \mid D), p(A+\bar{A})=1$
- marginalization:

$$
p(x \mid z)=\int d y p(x y \mid z)
$$

- Bayes' Theorem:

$$
\begin{aligned}
& p(\theta D)=p(\theta) p(D \mid \theta)=p(D) p(\theta \mid D) \\
& p(\theta \mid D)=p(\theta) p(D \mid \theta) / p(D)
\end{aligned}
$$

Markov Chain Monte Carlo

- directed and efficient Monte Carlo
- An ordered chain of parameter values that depends only on the previous state $p\left(\theta_{i} \mid \theta_{i-1}, \theta_{i-2}, . ., \theta_{1}\right)=p\left(\theta_{i} \mid \theta_{i-1}\right)$
- sample θ_{i}, accept for sure if likelihood improves, and with small probability even if it doesn't

Markov Chain Monte Carlo

- directed and efficient Monte Carlo
- An ordered chain of parameter values that depends only on the previous state $p\left(\theta_{i} \mid \theta_{i-1}, \theta_{i-2}, . ., \theta_{1}\right)=p\left(\theta_{i} \mid \theta_{i-1}\right)$
- sample θ_{i}, accept for sure if likelihood improves, and with small probability even if it doesn't
"One small step in iteration, one probability distribution for parameter."
- Neil Armstrong (shooting for the Moon)

Markov Chain Monte Carlo

- directed and efficient Monte Carlo
- An ordered chain of parameter values that depends only on the previous state $p\left(\theta_{i} \mid \theta_{i-1}, \theta_{i-2}, . ., \theta_{1}\right)=p\left(\theta_{i} \mid \theta_{i-1}\right)$
- sample θ_{i}, accept for sure if likelihood improves, and with small probability even if it doesn't
- histogram of parameter values asymptotically gives marginalized posterior probability distribution
- combines acceptance, rejection, and importance sampling, and preferentially samples from higher probability regions

MCMC: the Surgeon General's warning

- no guarantee of convergence: run multiple chains from different starting points
- chain must be homogeneous and ergodic
- always check the trace of the parameters
- has it reached an asymptotic limit?
- are the draws independent?
- is the sampling efficient?

III. Systematic Errors

- the main focus of this group is to identify and eliminate systematic errors
- but not always possible. in that case, can we somehow include them as part of analysis?
(yes)
- make available representative samples of ARFs, RMFs, PSFs, and we will take care of the rest

Main Uncertainties in Instrument Response: Chandra ACIS-S

random variations of input parameters

 $\mu($.$) : multiplicative perturbative functions$$\Omega(\sigma)$: truncated Gaussian
$-\mu_{H}$

- sample contam models
- vignetting $\mathrm{V}(\theta)$ from
$\mu_{\mathrm{v}}(\mathrm{E}, \theta)=\Omega\left(\sigma_{\mathrm{v}}\right)(1-\mathrm{V}(\theta))$
$+\theta \Omega\left(\sigma_{s}\right)\left(1-R_{D W} / R\right)$
$\sigma_{\mathrm{v}}, \sigma_{\mathrm{s}}=0.2$
$-\mu$ овғ(E)
- Contamination Layer $\ln \left(\mu_{\mathrm{CL}}(E)\right)=-\sum x \Omega(\sigma x) \tau x$
$\mathrm{X} \equiv \mathrm{C}, \mathrm{O}, \mathrm{F}, \mathrm{Fl}$
$\mu_{\mathrm{CL}}(0.7 \mathrm{keV})<0.05$
$-\mu_{\mathrm{QE}}(\mathrm{E})$
-13% in CCD depletion depth and 20% in SiO_{2}
thickness
$-\Omega\left(\sigma_{G}\right), \sigma_{\mathrm{G}}=1 \%$ @0.7 keV, 0.5\% @1.5 keV, 0.2% @ ≥ 4 keV

FLASHBACK FROM IACHEC 2010

coming soon to a console near you
pyBLoCXS

pyBLoCXS

- MCMC fitting engine in CIAO/Sherpa
- python code

pyBLoCXS

- MCMC fitting engine in CIAO/Sherpa

- python code

pyBLoCXS

- MCMC fitting engine in CIAO/Sherpa
- python code
- http://hea-www.harvard.edu/AstroStat/pyBLoCXS/
- capabilities
- fit any Sherpa model
- include log, normal, flat, or user-defined priors
- multiple chains
- parameter transformations
- coming soon
- calibration uncertainty sampler

