Calibration of the AGILE Gamma Ray Imaging Detector

Andrew Chen on behalf of the AGILE Team

April 11, 2011

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

round and in-flight calibration

Results Future work

Conclusion

AGILE

- Astrorivelatore Gamma ad Immagini LEggero
- Italian Space Agency (ASI) small mission
- Participation from INAF, INFN, Italian univerities, industrial partners
- Launched April 23, 2007 from Sriharikota, India

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

AGILE

- Gamma-ray Imaging Detector (GRID): 30 MeV
 - 50 GeV
- X-ray detector (Super-AGILE): 18-60 keV
- Mini-calorimeter (MCAL): 300 keV - 100 MeV

(日)、

ъ

ъ

AGILE-GRID

- Pair-production telescope
- Tungsten-Silicon Tracker: 12 planes, 0.8X₀
- $38.06 \times 38.06 \times 21.078$ cm³

(日) (同) (日) (日)

On-board Trigger

- Combination of hardware (Level-1) and software (Level 2)
- Simulations in GEANT v3.21
- Validated with cosmic-ray muons at Tortona and beam tests at INFN-Frascati

・ロト・日本・日本・日本・日本・日本・日本

Event reconstruction - Kalman filter

- Simplified on-board Kalman filter to reject albedo photons
 - Retains 85-95%
- On-ground analysis using complete Kalman filter
- Provides reconstructed energy and photon incidence direction
- Unreconstructable events are rejected

Background rejection filters

- Detailed analysis of event morphology to distinguish photons from charged particles
- Events classified as gamma-rays (G), uncertain (L), particles (P) or single-track (S)
- \bullet All analysis except pulsar timing use G exclusively

Monte Carlo Simulations

- $\bullet\,$ Series of runs with 59 $\times\,10^6$ events each over a radius of 136.5 cm
- Spectral index -1.7, energies ranging from 4 MeV to 50 GeV
- Each run contains a parallel plane of photons from a different incidence direction
- Off-axis angle = 1,30,35,40,45,50,60 $^{\circ}$
- Roll angle 0, 45°

Effective area

Figure: geometric area \times fraction of surviving events classified as G

・ロト ・聞ト ・ヨト ・ヨト

æ

Conclusio

Effective area

Figure: geometric area \times fraction of surviving events classified as G

æ

Conclusion

æ

Conclusion

æ

Conclusion

æ

æ

Conclusion

æ

Conclusion

ヘロン ヘロン ヘビン ヘビン

æ

æ

Conclusion

・ロト ・聞ト ・ヨト ・ヨト

æ

Conclusion

Conclusion

Energy Dispersion

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

・ロト ・聞ト ・ヨト ・ヨト

æ

Conclusion

ヘロン ヘロン ヘビン ヘビン

æ

Conclusion

Energy Dispersion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

æ

Conclusion

Energy Dispersion

æ

Conclusion

Conclusion

Point spread dispersion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Point spread dispersion

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Point spread dispersion

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Physical sources - Effective area

Introduction

- Physical sources are modeled as a sum of monoenergetic sources
- In principle, $A_{eff} = \frac{\sum_i A(E_i)w(E_i)}{\sum_i w(E_i)}$ where $w(E_i) = (E_{i+1}^{-\alpha} - E_i^{-\alpha}) \sum_j EDP(E_i, E_j)$ and all quantitites are a function of incidence angle in instrument coordinates, event type (G) and filter (FM)
- In practice, this quantity was too sensitive to small changes in the spectral index due to contributions from low energy photons, where the effective area is poorly calibrated.
- Therefore, we use $w(E_i) = f(E_i)(E_{i+1}^{-\alpha} E_i^{-\alpha})$ where $f(E_i)$ is determined post-hoc

Physical sources - Point spread dispersion

- $PSD = \frac{\sum_{i} PSD(E_{i})w(E_{i})}{\sum_{i} w(E_{i})}$ where $w(E_{i}) = (E_{i+1}^{-\alpha} - E_{i}^{-\alpha}) \sum_{j} A_{eff}(E_{i})EDP(E_{i}, E_{j})$ and all quantitites are a function of incidence angle in instrument coordinates, event type (G) and filter (FM)
- The current version (I0007/I0010) of the PSD files uses histograms taken directly from the Monte Carlo simulations. New PSD files (I0023/I0024) are in preparation which contain values derived from a fit to the Monte Carlo data using a three parameter King function:

•
$$f(\rho)d\Omega = N(1-1/\gamma)(1+\frac{(\rho/\delta)^2}{2\gamma})d\Omega$$

In-flight Calibration Procedure

- Long-term integrations of AGILE in-flight data in both pointing (2007/07/13 2009/10/15) and spinning (2009/11/04 2010/10/31) modes of the Vela and anti-center regions, generating counts and exposure maps with a bin size of 0.3°
- Maximum likelihood analysis taking into account Galactic diffuse emission and isotropic background
- Point sources: Vela pulsar in the Vela region, Crab and Geminga pulsars and IC443 in the anti-center region
- Analysis performed with fixed position and fixed, power-law spectra
- Model counts compared to data to validate point spread function
- Spectra and fluxes compared to those published in the Fermi Catalog in order to determine the post-hoc scaling factors for the effective area

Future work Conc

Energy-dependent effective area scaling factors

Figure: We introduce energy-dependent scaling factors into the sensitive area response function to correct for the underestimate of the flux and spectra. ($10023 \rightarrow 10024$)

Future work Con

Conclusion

Energy-dependent effective area scaling factors

Figure: We introduce energy-dependent scaling factors into the sensitive area response function to correct for the underestimate of the flux and spectra. ($10023 \rightarrow 10024$)

Results

Future work Conclusion

Point spread function, Vela, E > 100 MeV

Figure: A 10° slice centered on Vela. The data are well-fit by the point-spread function assuming a spectral index of -1.66, weighted by effective area, spectrum, and energy dispersion.

Results

Future work Conclusion

Point spread function, Vela, E > 100 MeV

Figure: A 10° slice centered on Vela. The data are well-fit by the point-spread function assuming a spectral index of -1.66, weighted by effective area, spectrum, and energy dispersion.

Results

Future work Cond

Point spread function, Vela, E > 400 MeV

Figure: A 10° slice centered on Vela. The data are well-fit by the point-spread function assuming a spectral index of -1.66, weighted by effective area, spectrum, and energy dispersion.

Results

Future work Concl

Point spread function, Vela, E > 400 MeV

Figure: A 10° slice centered on Vela. The data are well-fit by the point-spread function assuming a spectral index of -1.66, weighted by effective area, spectrum, and energy dispersion.

Future work

Conclusion

Single energy vs. composite PSF

Energy (MeV)	68% C.R.	
100	4.4°	
400	1.35°	
1000	0.69°	

Table: 68% Containment radius, off-axis angle = 30° , single energy

Energy Range	68% C.R.
100 MeV - 50 GeV	2.1°
400 MeV - 50 GeV	1.1°
1000 MeV - 50 GeV	0.8°

Table: 68% Containment radius, off-axis angle = 30°, $\alpha = -1.66$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Work in progress

- Validate Crab flux and spectra, other sources
- Understand post-hoc scaling factors
- Allow AGILE-GRID scientific analysis below 100 MeV
- Re-evaluate EDP-dependent effective area calculation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cross-calibration with Fermi - in preparation

- AGILE-GRID sensitivity is highest around 100 MeV, decreases rapidly above 10 GeV
- Fermi-LAT effective area is highest above 1 GeV, decreases rapidly below 200 MeV
- Use Fermi-LAT catalog data to determine how source flux below 200 MeV can change AGILE sensitivity for a give Fermi flux and spectrum

 In collaboration with Fermi, use simultaneous data to determine how energy dispersion, energy dependence of effective area, and off-axis exposure influence Fermi and AGILE sensitivity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion

AGILE & Fermi, 1-day exposure

	AGILE-GRID	AGILE-GRID	Fermi-LAT
	(pointing)	(spinning)	(front)
FOV (sr)	2.5	2.5	2.5
Rate of drift	$pprox 1^{\circ}/{\sf day}$	$pprox 1^{\circ}/{ m sec}$	\approx 4°/min
Sky coverage	1/5	pprox 70%	whole sky
Source livetime	pprox 0.5	pprox 0.2	pprox 0.16
fraction			
1-day exposure	≈ 2	0.5-1	1-2
(10' cm² s)			
30° off-axis, 100 MeV			

Fermi vs. AGILE pointing

Figure: Top: off-axis angle vs. time; Bottom: histogram of off-axis angle. AGILE = red, Fermi = blue

n-ground and in-flight calibratio

Results

Future work

Conclusion

Fermi vs. AGILE spinning

Figure: Top: off-axis angle vs. time; Bottom: histogram of off-axis angle. AGILE = red, Fermi = blue

Conclusion

- In-flight data confirm modeling of point spread function
- Extreme sensitivity to source spectrum due to large energy dispersion
- Post-hoc scaling factors compensate for lack of energy dispersion term in effective area calculation
 - More pronounced at lower and higher energies
- Necessary first step in cross-calibration with Fermi-LAT

• Many avenues to resolve apparent discrepancies