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Reflecting Surface: Smooth or Rough?

1 Rayleigh criterion (1877) for “smooth” surface

Reflected wavefront phase shift: ∆φ < π/2

σ <
λ

8 sinα
(1)

σ scale of the surface roughness

λ wavelength
α grazing angle

2 Some examples of “smooth” surface

Surface λ α σ (Å)

Airport radar dish (∼3GHz) ∼10 cm ∼80◦ < 1.3 cm
Satellite TV dish (∼10GHz) ∼3 cm ∼60◦ < 4.3 mm

Mirror in your bath room 5500Å 90◦ < 690Å
Chandra X-ray Observatory (0.1–10keV) 1.24Å–124Å 27.1′–51.3′ < 10Å

3 Chandra mirrors (HRMA) is polished according to this criterion

• HRMA surface: σMiddle ∼ 1.95 − 3.58Å — about the size of one Ir atom (r=1.35Å)!

• However, a scattering free mirror requires: ∆φ < 0.1 → σ << λ
8 sinα

• Scattering from HRMA surface is not negligible.
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Random Rough Surface and Power Spectral Density

1 Random Rough Surface

2 Power Spectral Density

Power Spectral Density of a 1-dimensional surface:

PSD(f) ≡ 2W1(f) =
2

L

∣

∣

∣

∣

∣

∫ L/2

−L/2

eı2πxfh(x)dx

∣

∣

∣

∣

∣

2

(2)

f surface spatial frequency

L surface length
x coordinate along the surface

z = h(x) surface height (i.e. deviation from a perfectly flat surface)

3 Surface Roughness Amplitude RMS

σ2
f1−f2

=

∫ f2

f1

2W1(f)df (3)

4 Total Power σ2

σ2 =

∫ ∞

0

2W1(f)df (4)
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Chandra X-ray optics – HRMA

• The HRMA surface roughness is based on the HDOS metrology measurements with the

instruments of: Circularity and Inner Diameter Station (CIDS), Precision Metrology
Station (PMS), and the Micro Phase Measuring Interferometer (MPMI, aka WYKO).

• The mirror surface roughness has little variation with azimuth, but tends to become

worse near the mirror ends. So each mirror was divided into several axial sections based
on the roughness. This resulted in a total of 61 sections as listed below.

• Surface PSD was derived for each section using the Fourier transform.

HRMA Mirror Sections and Their Surface Roughness

HRMA Sections Num of
Mirror Surface Roughness Amplitude RMS σ1−1000/mm (Å) Sections

P1 LC LB LA M (88%) SA SB SC 7
50.3 8.49 4.51 3.58 4.91 5.94 53.9

P3 LB LA M (92%) SA SB 5
5.37 5.26 1.96 2.38 4.83

P4 LB LA M (93%) SA SB 5
6.41 3.15 2.57 3.21 6.81

P6 LB LA M (94%) SA SB 5
37.1 5.23 3.34 5.65 20.9

H1 LD LC LB LA M (88%) SA SB SC SD SE SF 11
26.9 5.34 3.64 3.34 3.32 3.32 3.32 3.32 3.53 7.30 60.3

H3 LC LB LA M (92%) SA SB SC SD 8
4.87 2.90 2.23 2.08 2.08 2.10 3.95 5.56

H4 LD LC LB LA M (93%) SA SB SC SD SE 10
7.18 3.83 2.61 2.57 2.36 2.36 2.74 2.68 4.01 29.4

H6 LD LC LB LA M (94%) SA SB SC SD SE 10
19.0 4.92 2.51 2.23 1.95 1.95 1.95 2.07 2.96 15.9

Total 61

Zhao/CfA 4



IACHEC 2010 April 14, 2010 Woods Hole, MA

PSD of Chandra X-ray optics

Surface PSD of Chandra mirror P1-M, the middle section of mirror P1 (left); and P1-SC, the small end section
of mirror P1 (right). P1 and H1 were the first polished mirror pair and are slightly “rougher” than other pairs
(see Table). The dash and dotted lines show the data from four different measurements. The solid line is the
combined PSD from all four frequency ranges. The SC section obviously is much rougher than the M section,
with higher PSD value for given frequency band.
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Construction of Model Surfaces

For a given PSD, a model surface can be constructed as N consecutive surface height values

hi = h(xi) with a fixed interval ∆x to cover the surface (i.e. N∆x = L), and its surface tangent
values h′

i = h′(xi), using the discrete Fourier transforms:

hi =
1

N

N/2
∑

j=−(N/2−1)

Hj e−ı 2πij
N (5)

h′
i =

−ı2π

N

N/2
∑

j=−(N/2−1)

fj Hj e−ı 2πij
N (6)

where

Hj = N

√

PSD(fj) ∆f

2
eıϕj (7)

∆f = 1/N∆x; and ϕj is a random phase factor.

Both hi and h′
i are real, this requires H−j = H∗

j , i.e. PSD(f−j) = PSD(fj) and ϕ−j = −ϕj.

To construct the model surfaces of HRMA, we choose:

N = 221

∆x = 0.0004 mm

L = N∆x = 838.86 mm
∆f = 1/N∆x = 0.001192 mm−1
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Constructed Model Surface Height and Surface Tangent

Model surfaces of Chandra mirror section P1-M (left) and P1-SC (right).
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Kirchhoff Integral of Scattering

x

z

L/2-L/2

1 Definition:

• S0 — 2-dimensional flat surface at z = 0.

• S — 2-dimensional rough surface at z = h(x, y).

• E1e
ık1·r = E1e

ı(k1x+k3z) — incident plane wave.

• E2e
ık2·r = E2e

ı(kxx+kyy+kzz) — reflected or scattered wave.

• θ1, θ2 — incident and reflecting grazing angles.

2 Kirchhoff Integral:

E(r0) =
1

ıλ

∫

S

∫

dsE(s)eı(k1x+k3z) eıkr

r2
(n̂ · r) (8)

3 Far-field Approximation (x << x0, y << y0, z << z0)

E(r0) ≈
ıeıkr0

2πr0

∫∫

dxdy E(s)eı[(k1−kx)x−kyy+(k3−kz)h(x,y)]

[

kx
∂h(x, y)

∂x
+ ky

∂h(x, y)

∂y
− kz

]

(9)
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Scattering from 1-D Surface

For grazing incidence, in-plane (of in-

cident) scattering dominates. So let’s
first consider the Kirchhoff solution

in a 1-D surface, i.e. h(x, y) = h(x)
and ky = 0. Out-of-plane scattering
is reduced by a factor of sin θ1, which

we will consider later.
x

z

u

v

Transfer the integral from the rough surface S to flat surface S0:

E(r0) = −
ıkze

ıkr0

2π

∫

dxE(x) eı(k1−kx)x = −
ıeıkr0sin(θ1 − θ)

λ

∫

dxE(x) eı2πξx = E(ξ(θ)) (10)

where θ (= θ1 − θ2) is the scattering angle, and define a new variable ξ as a function of θ:

ξ ≡
k1 − kx

2π
=

k cos θ1 − k cos (θ1 − θ)

2π
= −

k

π
sin(θ1 −

θ

2
) sin

θ

2
(11)

θ = θ1 − cos−1

(

cos θ1 −
2πξ

k

)

= θ1 − cos−1 (cos θ1 − ξλ) (12)

Field E(x) on non-uniform grid (xri
) on surface S0:

E(xri
) = E(ri) eı φi ; xri

= xi −
hi

tan θ2
; φi = −2 k hi

sin2 θ1+θ2

2

sin θ2
(13)
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Scattering Formulae

1 Exact solution of the 1-D scattering equation

E(r0) = E(ξ(θ)) = −
ıeıkr0sin(θ1 − θ)

λ

∫

dxE(x) eı2πξx (14)

2 Redistribute field E(xri
) onto uniform grid xi

Ei ≡ E(xi) = Ai Bi E(xri
) = Ai Bi E(ri) eıφi = Ai Bi E1 R(θ1 + tan−1(h′

i)) eıφi (15)

where: Ai is the beam uniform mapping factor for the incident wave density;

Bi is the beam uniform maping factor for the outgoing wave density;

R(θ1 + tan−1(h′
i)) is the reflection coefficient with the local grazing angle at ri;

φi is the phase delay between xri
and ri.

3 Fourier mapping into ξ space (let ∆x∆ξ = 1/N)

Ej ≡
E(ξj)

∆x
= −

ıeıkr0sin(θ1 − θj)

λ

N/2
∑

i=−(N/2−1)

Ei eı 2πij
N (16)

4 Scattering intensity

I(θj) = I(ξ(θj)) ≡ AE(ξj)E
∗(ξj) = A

(

∆x sin(θ1 − θj)

λ

)2

∣

∣

∣

∣

∣

∣

N/2
∑

i=−(N/2−1)

Ei eı 2πij
N

∣

∣

∣

∣

∣

∣

2

(17)

where A is a normalization factor.
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Now we are finally done! Just plug everything into the above equation to

get your beautiful scattering profile from the rough surface. Right?

Well, not quite ... WHY?
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Scattering from Flat Surface

The scattering of 1.49 keV X-rays at 51.26′ grazing incident angle from a perfectly flat surface, using Eq. (17).

All the points except the central peak (θj = 0) are calculated in the valleys of the Fraunhofer diffraction pattern.

The scattering of 1.49 keV X-rays at 51.26′ grazing incident angle from a perfectly flat surface, using Eq. (18)

with p = 16. The scattering model produces the Fraunhofer diffraction pattern due to the finite mirror length.
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Scattering Formulae (continue)

5 Scattering formula

To obtain the diffraction patterns at angles between θj and θj+1, we divide θj+1 − θj into p
equal spaces. The diffraction pattern at θj+q/p(q < p) can be calculated as:

I(θj+q/p) = A

(

∆x sin(θ1 − θj+q/p)

λ

)2
∣

∣

∣

∣

∣

∣

N/2
∑

i=−(N/2−1)

(

Eie
ı 2πiq/p

N

)

eı 2πij
N

∣

∣

∣

∣

∣

∣

2

(18)

where q = 0, 1, 2, . . . , p − 1. So we need to perform p Fourier transforms instead one.

6 Normalization

Let ε be the energy carried by each of the N incident rays of the plane wave E1.

Total incident energy : Ei = Nε (19)

Total reflected energy on S0 : Er =

N/2
∑

i=−(N/2−1)

|Ei|
2 = ε

N/2
∑

i=−(N/2−1)

A2
i B2

i

∣

∣R(θ1 + tan−1(h′
i))

∣

∣

2
(20)

Total scattered energy from S0 : Es =

∫

dθ I(θ) = A

∫

dξ |E(ξ)|2 (21)

Rough surface reflectivity : R ≡
Er

Ei
=

1

N

N/2
∑

i=−(N/2−1)

A2
i B2

i

∣

∣R(θ1 + tan−1(h′
i))

∣

∣

2
(22)

Let Er = Es. We obtain the normalization factor:

A =
ε
∑N/2

i=−(N/2−1) A2
i B2

i

∣

∣R(θ1 + tan−1(h′
i))

∣

∣

2

∫

dξ |E(ξ)|2
=

εNR
∫

dξ |E(ξ)|2
=

EiR
∫

dξ |E(ξ)|2
(23)
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Scattering Formulae (continue)

7 Encircled Energies

Forward scattering : EE+(ϑ) ≡
1

Es

∫ ϑ

0

I(θ) dθ =
1

REi

∫ ϑ

0

I(θ) dθ (24)

Backward scattering : EE−(ϑ) ≡
1

Es

∫ 0

−ϑ

I(θ) dθ =
1

REi

∫ 0

−ϑ

I(θ) dθ (25)

Total scattering : EE(ϑ) ≡
1

Es

∫ ϑ

−ϑ

I(θ) dθ =
1

REi

∫ ϑ

−ϑ

I(θ) dθ (26)

8 Scattering function

S(ϑ) ≡
1

Es

∫ ϑ

−∞

I(θ) dθ =
1

REi

∫ ϑ

−∞

I(θ) dθ (0 ≤ S(ϑ) ≤ 1) (27)

A scattering table can be generated using the scattering function and to be used for raytrace

simulation.

ϑ = ϑ(P ) where P ∈ [0, 1] (28)

9 Out-of-plane Scattering

ϕ = sin θ1
|ϑ(P ′)| + |ϑ(1 − P ′)|

2
where P ′ ∈ [0, 1] (29)
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The scattering of 1.49 keV X-rays at 51.26′ grazing incident angle from the model surface P1-M. The top-left
panel shows the scattering field intensity verses the scattering angle. The very sharp peak is at the specular
reflection direction θ = 0. The asymmetric nature of the scattering is clearly shown. The top-right panel is
the same plot but zoomed into the core of the peak; it shows the Fraunhofer diffraction pattern due to the
finite mirror length. The bottom-left panel shows the fractional Encircled Energy (EE) verses the scattering
angle, for both sides of the specular direction, and also their sum. The bottom-right panel shows the scattering
function S verses the scattering angle in the same range as the top-right panel.
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Scattering from model surface P1-SC. It has much broader scattering peak than P1-M. Notice

the asymmetry of of the scattering around the specular reflection direction. The scattering
function at zero scattering angle is more than 0.5. This means there are more total backward
scattering (θ < 0) than the total forward scattering (θ > 0).
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10 Steps Towards Perfect Scattering!

1. Construct a model rough surface S from PSD.

2. Calculate E(ri) on the surface S.

3. Transfer E(ri) to E(xri
) on non-uniform grid on flat surface S0.

4. Redistribute E(xri
) into E(xi) on uniform grid.

5. Fourier mapping E(xi) into ξ space.

6. Perform p equally spaced Fourier transforms to obtain the Fraunhofer diffraction pattern.

7. Normalization.

8. Derive the scattering intensity as a function of scattering angle.

9. Calculate scattering function and generate scattering table.

10. Give a random number in [0,1], look up in the table to get your scattering angle!

Comparing The New Method with the Traditional Method

Compare Traditional New

Scattering angle << grazing angle no restriction

symmetric wrt specular direction asymmetric
Scattered rays only some rays are scattered every ray is scattered

Scattering and reflection treated separately treated together
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Summary and Future Work

• We have developed a new method to model the wave scattering from random rough
surfaces.

• This method is applicable in general and is especially useful for X-ray scattering at

grazing angles.

• This method is based on the general Kirchhoff equation but without small angle approx-

imations.

• This method treats the reflection and scattering together and provides the dependence
of the reflectivity on the surface roughness.

• This method has been applied to the mirrors of the Chandra X-ray Observatory and the
results show that the calculated scattering profile is as expected, including the asym-

metrical scattering profile for grazing incidence and the Fraunhofer scattering patterns
due to the finite length of the surface.

• Scattering tables are generated based on this new method for all the Chandra mirror

sections.

• This new scattering method is implemented in the raytrace to simulated the CXO per-
formance. (This is finally working just last week!)

• The preliminary raytrace runs show the new scattering method produces results in better
agreement with the XRCF calibration data. SO, IF YOU CARE, STAY TUNED!

• This new scattering method should be useful for other X-ray telescope missions as well.

Refenrece:

Ping Zhao and Leon P. Van Speybroeck, “A new method to model X-ray scattering from
random rough surfaces” 2002, SPIE Proceedings 4851-11
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This talk is dedicated to

Dr. Leon P. Van Speybroeck
(1935 – 2002)

Chandra X-ray Observatory Telescope Scientist

The world’s foremost designer of X-ray telescopes and a true math genius

The spectacular achievement of Chandra is not possible without him!
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