

Advances in the PCA energy calibration - nearing the statistics limit

N. Shaposhnikov^{1,2,3}, K. Jahoda³, C. Markwardt^{1,2,3}, J. Swank, RXTE team and Users Group

¹University of Maryland, Astronomy Department ²Center for Research and Exploration in Space Science & Technology (CRESST) ³NASA/Goddrd Space Flight Center

RXTE Proportional Counter Array

- PCA is a primary instrument on board RXTE
- 5 Proportional Counter Units (PCU)
- Effective PCU area ~ 1500 cm²
- 3 50 keV effective energy range
- Microsecond time resolution
- Main instrument for study spectral
- evolution and fast timing phenomena in

galactic compact sources for almost 14

years. Flux and energy scale

PCA Response Calibration

- Implemented as PCARMF and XPCAARF FTOOLS
- Based on the physical model (Jahoda et al. 2006, ApJS, 163, 2, 401)
 - energy-to-channel (E2C) relationship
 - quantum efficiency
 - redistribution
- 256 instrument channels
- E2C information
 - on board calibration source Am₂₄₁ 6 lines 13 to 60 keV
 - Cas-A iron line at ~6.4 keV (v11.1)
 - Xe L-edge in Crab spectra (v11.7)
- Flux calibration
 - Crab
 - Power law spectral distribution is assumed

• Γ =2.11, Norm (1 kev) = 11.0, N_H = 0.34×10²² cm⁻²

• Current version v11.7 presents a major change in minimization method

PCA Response Components

Overall we need 43 parameters to describe response for a particular detector layer

PCA Calibration Data

Crab

- Flux calibration
- Quantum efficiency parameters

Am 241

- E2C calibration
- 6 Lines from 13 to 60 keV
- Resolution coeff. (v11.7)

Cas A

- Fe K α Line at ~6.6 keV
- Calibration source for v11.1 and earlier
- Test Source for v11.7

BNL ground calibration data on resolution: $\Delta E=1$ keV @ 6keV & 2 keV @ 22keV

PCA Calibration Data Flow (PCARMF v11.1 and earlier)

PCA Response Minimization Method

XSPEC session for PCARMF model fit

XSPEC session for PCARMF model fit

PCARMF model fit results

PCARMF v11.1 vs v11.7: Crab Test

Enenrgy-to-Channel Scale Test

Systematic Error

PCU 2Crab data onlyBest fit parameters

- systematic error is 0.5-0.8%
- very high statistic data 1%, but not more 1.5%
- v11.1 response 1–2% sys. error

PCARMF v11.1 vs v11.7

	PCARMF v11.1	PCARMF v11.7
e2c relationship	•5 epochs	• 4 epoch (except
	 7 coefficients per epoch 	PCU 0,1)
		5 coeff./epoch
Resolution	• $\Delta ch = B\sqrt{(aE+b)}$	• $\Delta ch = B\sqrt{(aE)}$
	• a=0.121, b=0.422	• a = ~0.17
Quantum		Escape lines
efficiency		have different
Performance	 Show trends both in index and norm in Crab 	 Index and normalization is stable with only minor trends
	• gradually worsening χ^2	
	 PCUs 0 & 1 are unusable after propane loss 	 No signs of decline in χ² quality
	 e2c is not reliable esp. for 	• e2c is stable and

Advances in the PCA energy calibration - nearing the statistics limit

SUMMARY

Conclusion

- New response is a huge step up in RXTE/PCA calibration quality and instrument understanding
- PCA is healthy, performing well and can operate several more

Future Plans

- To test theoretical Crab models (as per Weisskopf et al 2010)
- To work towards more universal calibration with other mission (Kirsch et al. 2005, XMM-Newton)
- Apply response minimization method for new instruments (ASTROSAT?)