

The Nuclear Spectroscopic Telescope Array.

Kristin Kruse Madsen California Institute of Technology

Brian Grefenstette, Fiona A. Harrison

Mission Overview

Launch Feb 2012

Primary mission lifetime: 2 yrs

- Supernova remnants
- Deep sky survey
- Galactic center survey
- High energy galactic targets
- High energy extra galactic targets
- Solar observations

Payload Description

- Two identical coaligned grazing incidence hard X-ray telescopes
 - 12 arcmin FoV, 45" HPD
- Extendable mast provides 10-m focal length
 - Single-use adjustment mechanism
- Simple laser metrology system to remove mast flexure
- Star camera head + metrology provides fine aspect

Extendable Mast

NASA Optics

Fig: HEFT optic

Conical Wolter I approximation

Parameter	Value	
Minimum radius	5.44 cm	
Maximum radius	19.12 cm	
Primary Mirror length	22.7 cm	
Focal Length	1015 cm	
Number of Shells	130	
Depth Graded Multilayers:		
Inner shells (1 - 89)	Pt/C	
Outer shells (90 - 130)	W/Si	

Substrates:

Slumped Borosilicate t=0.21 mm

Focal Plane Detectors

- CdZnTe
- 4 crystals (2 x 2 cm)
- 32 x 32 pixels/crystal
- pixel pitch 0.6 mm
- DE = 1 keV @ 60-80 keV
- Data rate = 200 cts/s/FP
- Timing = 1ms

Alignment	Requirement	Rationale	
Optical Axis Knowledge	1 5"	Throughput	
	15	determination	
Effective Area			
Absolute effective Area: 6 -10 keV - central	150%	Cross calibration with low-	
2' x 2'	1570	energy missions	
Absolute effective area: 6 - 10, 10 - 30, 30 -	250/	Hardness ratio	
79 keV bands - 11' x 11'	23%	determination, surveys	
Absolute effective area in each 2 keV bin	1 7 0/2		
between 60 - 80 keV	12%	⁴⁴ Ti yield measurement	
Relative effective area in each 2 keV bin	F0/-	Spectral index fitting,	
between 6 and 79 keV over central 8' x 8'	570	bright sources	
Relative effective area in each 2 keV bin 60 -	20/	Continuum modeling and	
79 keV in central 8' x 8'	5%	subtraction ⁴⁴ Ti	
Point Spread Function			
Integrated PSF 70-90% encircled energy	1.00/	Mapping diffuse	
over 11'x11'	10%	features/point sources	
PSF as function of radius out to 70%		Flux determination.	
encircled energy	3%	Remove point sources in	
		diffuse emission	
PSF as function of azimuth out to 70%	1.00/	Mapping diffuse extended	
encircled energy over 11' x 11'	10%0	features, jets	

- Combination of ground and in-flight calibration
- Ground calibration used for
 - Accurate relative effective area of optics
 - Absolute detector response at fixed energies
 - Throughput of windows and blankets
- In flight calibration for
 - Optical axis alignment and determination
 - Overall area normalization
 - PSF measurement
 - Verification of area/redistribution matrix

Ground Calibration

- Calibration facility on-site at Nevis
 - 150-m bremsstrahlung W tube source gives intense beam up to 80 keV
 - Calibrated germanium detector, silicon detector, and NuSTAR EM used to measure input and focused beam
 - Used on and off axis with movable mask to determine relative throughput as function of energy and discrete off axis angles
 - Currently operational

- Quantum efficiency maps
 - Flood illumination with radioactive sources calibrated against standardized detectors
 - ⁵⁵Fe(6 keV), ¹⁵⁵Eu(43, 86.5 keV), ²⁴¹Am(14, 60 keV), ⁵⁷Co(6, 14 keV)
 - Select clean, isolated lines with known branching ratios
 - Source calibration utilizing *RHESSI* spare and CIT Ge with collimated sources and GFANT4 model
 - Agreement to <1% on Am and Eu activities
 - CdZnTe model uncertainties allocated 4% for absolute QE
 - Spatial dependence of detailed line shapes, inter pixel and pixel-to-pixel charge collection variations difficult to accurately model

In-flight Calibration

- Require 'bright' point source steady on timescales of one day
 - Initial alignment determined from pointing grid scan
 - Brightest "point" determines optical axis orientation
 - Adjustment made to locate optical axis at specified point near focal plane center
 - Grid scan repeated to determine location of optical axis to required (15" 3-sigma) accuracy
- This calibration done entirely in-flight

Purpose	Source	RA (J2000)	Dec (J2000)	Variability	Extent
Optical axis Mast adjustment Redistribution matrix	3C273	12 29 06.69	+02 03 08.6	1 - 2% on 1-day timescales	Point source with weak 20" jet
PSF determination	Cygnus X-1	19 58 21.68	+35 12 05.8	Depends on state (~10% in hard state in 1	Point source
Absolute flux calibration Alternate mast adjustment and optical axis	Crab	05 34 31.97	+22 00 52.1	33 ms pulse period for point source	Point source in extended nebula (3-4 arcmin for E<10 keV)

- Time allocated to initial in-flight calibration = 15 days
 - Optical axis adjustment determination: 3 +3 days
 - 4 x 4 raster, 1000 x-rays/point will take 8 hours (600 s exposure/point assuming 3C273
 - Optical axis calibration: 1 day
 - 5 x 5 fine raster, 2000 x-rays/point
 - PSF calibration: 4 days
 - Limiting cases is 40-79 keV; 2-5 cps (Cyg X-1) on-axis takes 2 hours to characterize the PSF wings to 3%, 36 hours at largest off-axis angle
 - Effective area normalization: 4 days
 - Limited (statistical) by off-axis, high energy response

- Level 4 Requirements
 - Relative effective area between 6 60 keV over central 8' x 8' in 2 keV bins to 4%
 - Relative effective area between 60 79 keV over central 8' x 8' in 2 keV bins to 3%

- Level 4 Focal plane calibration requirements
 - Absolute quantum efficiency for each pixel in each keV bin to <5% absolute between 6 – 80 keV
 - Photopeak relative efficiency for each pixel to 2% for each keV bin between 6 – 80 keV
 - Transparency of the focal plane entrance window to 0.5% in each keV bin from 6 – 80 keV
- Calibration-related requirements
 - The uncertainty in the position bias correction in the measurement of X-ray position < 100 microns

Nuclear Spectroscopic Telescope Array

Focusing Optics

NuSTAR 5-79 keV

- Require bright, flat spectrum point source
 - Require flux at high energy to calibrate over entire energy range
 - Can be time variable but must be bright so that PSF wings are above detector background level
- Calibration sequence consists of pointing grid covering off axis angles
 - 6 x 6 grid 12 arcminutes on a side
 - Integration time sufficient to constrain PSF wings
- This calibration done entirely in-flight