Calibration and Spectra of Photoionized Sources

T. Kallman NASA/GSFC

Outline: disclaimer Background Examples Photoionized sources as calibrators?

What is 'photoionization'?

- When dominant excitation/ionization is from photons (vs. electrons)
 - Also: spectral signatures due to photoabsorption
 - Also could include: any signatures of bound-free
- context?
 - Compact objects (agn, x-ray binaries, cv's...)
 - Also ism/igm
- What do we expect to see?
 - Signature of absorption and reprocessing
 - Atomic features
 - Interesting since $T_{rad} >> T_{gas}$
 - Signs of geometry
 - Indicators of dynamics

A Historical note

- Prior to chandra, focus was on emission
 - Analogy with nebular lines
 - Notwithstanding asca detection of agn warm absorbers

(Netzer 1996)

If the gas is in the line of sight only, pure absorption

if C~1, expect no signature for elastic scattering

If the gas is expanding, get P-Cygni profiles

atomic processes redistribute the photon energies

A Historical note

- Discovery of line absorption took many people by surprise (cf. Kriss et al. 1996)
- Absorption lines imply non-spherical geometry
- Blueshift indicates outflow

Calculate ionization balance according to...

$$\frac{dn_i}{dt} = \Sigma_j \left(n_j R_{ji}(T, F, n..) - n_i R_{ij}(T, F, n...) \right)$$

- neglect time dependence
- The rate coefficients R_{ii} divide:
 - Coronal: excitation due primarily to electron collisions
 - Appropriate for mechanically heated gas: stellar coronae, virial flows
 - Photoionization: excitation due primarily to recombination following photoionization
 - Appropriate for gas exposed to strong radiation field, such as may occur near a black hole or neutron star which radiates a strong continuum

Calculate ionization balance according to...

$$\frac{an_i}{dt} = \Sigma_j \left(n_j R_{ji}(T, F, n..) - n_i R_{ij}(T, F, n...) \right)$$

- neglect time dependence
- The rate coefficients R_{ii} divide:
 - Coronal: excitation due primarily to electron collisions
 - Appropriate for mechanically heated gas: stellar coronae, virial flows
 - Photoionization: excitation due primarily to recombination following photoionization
 - Appropriate for gas exposed to strong radiation field, such as may occur near a black hole or neutron star which radiates a strong continuum

photoionization models couple to the temperature

$$\frac{d}{dt} \left(\frac{3}{2} nkT \right) = H(T, F, n..) - C(T, F, n..)$$
Heating
rate
Cooling
rate
rate

- Heating is due to slowing down of photoelectrons (plus Compton scattering)
- Cooling is due to electron collisions: excitation, ionization, recombination (plus Compton scattering)
- => the temperature is not a free parameter
- Both temperature and ionization balance depend on the 'ionization parameter', the ratio

$$\frac{\text{radiation flux}}{\text{gas density}} \equiv \frac{F}{n} \equiv \frac{\xi}{4\pi}$$

photoionization models couple to the temperature

$$\frac{d}{dt} \begin{pmatrix} 3 \\ 2nkT \end{pmatrix} = H(T, F, n..) - C(T, F, n..)$$

$$\underset{\substack{\text{Heating}\\\text{rate}}}{\overset{\text{Cooling}}{\underset{\text{rate}}{\overset{\text{Cooling}}{\underset{\text{rate}}{\overset{\text{Cooling}}{\underset{\text{rate}}{\overset{\text{Cooling}}{\underset{\text{rate}}{\overset{\text{Cooling}}{\underset{\text{rate}}{\overset{\text{Cooling}}{\overset{\text{Cooling}}{\underset{\text{rate}}{\overset{\text{Cooling}}{\overset{Cooling}}{\overset{\overset{Cooling}}{\overset$$

- Heating is due to slowing down of photoelectrons (plus Compton scattering)
- Cooling is due to electron collisions: excitation, ionization, recombination (plus Compton scattering)
- => the temperature is not a free parameter
- Both temperature and ionization balance depend on the 'ionization parameter', the ratio

$$\frac{\text{radiation flux}}{\text{gas density}} \equiv \frac{F}{n} \equiv \frac{\xi}{4\pi}$$

Ingredients of photoionization models –Photoionization equilibrium \rightarrow ion fractions

•Most now explicitly calculate excited level populations

- –Thermal equilibrium \rightarrow temperature
- -Spectrum synthesis \rightarrow 'xspec' models
 - •Either 'tables' or 'analytic'
- -Radiation transfer (major variations on this)
 - •Transfer of ionizing continuum into the gas
 - •Transfer of cooling radiation out of the gas
 - •'formal solution' to equation of transfer \rightarrow synthetic spectrum
- -All together \rightarrow 'full global model'

Atomic data: recent

- Photoionization experiment:
 - Ebit+3rd generation light source
 - Measure fluorescence emission following photoexcitation or photoionization
- Dr experiments pushing to end of iron

What atomic data goes into models?

process	status
recombination	X
ionization	Reciprocal with rec.
Electron impact excitation	linear
Charge transfer	N/a
Inner shell fluorescence/auger	X

how do model/astrophysical results depend on atomic data?

- These issues have been considered previously in the context of solar lines.
 - Gianetti,Landi and Landini (2000)
 - Savin and Laming (2002)
 - Netzer (2004)
- Procedure:
 - We perturb the dielectronic recombination rates coefficients by a constant factor in the log
 - Make trial fits to data with and without perturbed rates

Iron Recombination rate coefficients vs. temperature

log(temperature)

Baseline dielectronic recombination (DR) rate (including radiative cascades from n>5) based on Arnaud and Raymond (1992)

log(temperature)

Perturbed DR rates: log(Rate') = γ log(Rate) 0.9 < γ <1.1

Coronal ionization balance

--> ∆log(T)=0.1

Photoionization equilibrium for iron

 $--> \Delta \log(\xi) = 0.2$ or greater

an astrophysical example: NGC3783

- •900 ksec Chandra HETG observation
- •>100 absorption features
- •blueshifted, v~800 km/s
- •broadened, vturb~300 km/s
- •emission in some components
- fit to 2 photoionization model components
- (Kaspi et al 2002)

An astrophysical example: NGC3783

- •900 ksec Chandra HETG observation
- •>100 absorption features
- •blueshifted, v~800 km/s
- •broadened, vturb~300 km/s
- •emission in some components
- fit to 2 photoionization model components
- (Kaspi et al 2002)

 $\chi^2 \sim 111105/8192$, voff=700 km/s vturb=300 km/s

Fe XXII

baseline

Fe XXI

baseline

Perturbed DR

Perturbed DR

Photoionized Fitting results: ngc3783

- For baseline model:
 - χ^2 =11105/8192 (NOT acceptable, ~OK for discussion)
 - $Log(\xi)=2.2,0.1$ (similar to Krongold et al.)
 - Abundances:[Ne/O]=1, [Si/O]=1, [S/O]=2, [Fe/O]=0.4
- With perturbed DR, no iterations
 - $-\chi^2 = 17660/8192$
- With perturbed DR, iteratively fit
 - $-\chi^2 = 13072/8192$ (worse!)
 - Log(ξ)=2.9,0.1 (Significantly different!)

Sensitivity of astrophysical fits to atomic data

- if: $\Delta \log(DR \text{ rate coefficients}) \sim 0.1$
- $--> \Delta \log(\xi_{peak}) \sim 0.2$ or greater
 - Detailed abundances of minority ions change by factors ~several
 - Results of fitting to Chandra spectrum detectable, Δ (DEM)~0.5 in log(ξ)
 - Smaller effects are associated with 100% changes in Auger

This represents statistically significant effects on the spectrum, which affect quantititative results.

Another Example: Spectrum of NGC1068

Zoom 1: O VIII Lyman lines

- Ratios indicate scattering
 - Case A recombination makes $L\alpha:L\beta:Lc=5:1:10$
 - We see 3:1:2
- Profile structure is asymmetric--

16.1

Wavelength (A)

16

16.2

0.01

15.9

Scattering vs. recombination

- Scattering refers to bound-bound resonant excitation
- Recombination occurs after bound-free photoionizatio n

Scattering vs. recombination

- Scattering wins at low columns
- Makes strong allowed lines
- Recombination wins at high columns
- Makes recombination continua, forbidden lines emitted following cascade
- Column density diagnostic

(Kinkhabwala et al. 2003)

O VII spectrum

Zoom 1: O VIII Lyman lines

- Ratios indicate scattering:
 - Case A recombination makes $L\alpha:L\beta:Lc=5:1:10$
 - We see 3:1:2
- Profile structure is asymmetric-->absorption?

Zoom 2: He-like O VII

- Emission ratios indicate recombination in low density gas
 - N < 10^8 cm^{-3}

Zoom 3: Iron K line

- Photons emitted by decay following creation of K shell vacancy from photoionization
- Indicates low ionization material, large column density
- Cannot be seen in absorption
- Line luminosity=1.1 x 10⁴⁰ erg/s
 - Compare with continuum: L=2.7 x 10⁴⁰ erg/s

Stronger than ngc 3783!

Zoom 4: Si K lines

- Lines due to Si XIV and Si XIII indicate highly ionized gas
- Lines due lower states of Si, not detected, likely due to limited s/n, low fluorescence

Comparison: Ngc 3783 (red) vs. inverted ngc 1068 (black)

Additional diagnostic information from NGC 1068

- Column densities: from scattering vs. recombination $N_{\rm H}{\sim}10^{22}~cm^{-2}$
- Kinematics: from line profiles: outflow with v~500-1000 km/s
- Density from O VII lines: < 10⁸ cm⁻³ (contradicts NGC 3783)
- Ionization state: ionization balance depends on: photoionization vs. recombination ~flux ~density
 ==> define ionization parameter: ξ=4 π flux/density
 - Low ionization material (<==> iron K lines), ξ <10 erg cm/s
 - High ionization material (<==> 0 VII, 0 VIII), $\xi \sim 100$ erg cm/s
 - Almost entirely consistent with Example 1: NGC 3783

Status of modeling seyfert

- For NGC1068, we get acceptable χ^2 for fit to single component model
- letg data do not stress the model
 - This is not a bright source
 - But there are hints that the spectrum is not simple
- A more severe test is due to ngc 3783
 - $-\chi^2/v\sim 2$, not good!
 - ~half the lines in the spectrum are missing from models
- Sensitivity analysis suggests much of this