The Requirements for Calibrating an X-ray Polarimeter

Keith Jahoda IACHEC 2010 Woods Hole, MA

THE UNIVERSITY OF LOWA

IACHEC 2010, Woods Hole

X-ray Polarimetry

- Observational Status
- Photoelectric polarimetry basics
- Time projection detector concept
- Gravity and Extreme Magnetism Small Explorer mission
 - Expected Sensitivity and Results
 - Demonstrate the wisdom of including Polarimetry on IXO
 - Calibration needs and plans

But interest remains high among theorists and experimentalists: "X-ray Polarimetry Workshop", Stanford, Feb 9-11, 2004

http://www-conf.slac.stanford.edu/xray_polar/talks.htm

"The Coming Age of X-ray Polarimetry", Rome, April 27-30 2009

4/13/10 http://projects.iasf-roma.inaf.it/xraypol/xraypol/htmHole

Photoelectric X-ray Polarimetry

- Exploits: strong correlation between the X-ray electric field vector and the photoelectron emission direction
- Advantages: dominates interaction cross section below 100keV
- Challenge:
 - Photoelectron range < 1% X-ray absorption depth (λ_x)
 - Photoelectron scattering mfp < e⁻ range
- Requirements:
 - Accurate emission direction measurement
 - Good quantum efficiency
- Ideal polarimeter: 2d imager with:
 - resolution elements $\sigma_{x,y} < e^{-}$ mfp
 - Active depth ~ λ_x
 - => $\sigma_{x,y}$ < depth/10³

Modulation - Definitions

In practice, the distribution of estimated track directions, even for purely polarized input, is more complicated than a projection of the $sin^2\theta cos^2\phi$ probability distribution.

N = A + B
$$\cos^2(\phi - \phi_0)$$

$$\mu = \frac{N_{max} - N_{min}}{N_{max} + N_{min}}$$

 $\mu = B / (2A + B)$

$$MDP_{99} = \frac{4.29}{\mu R} \left(\frac{R+B}{T}\right)^{1/2}$$

IACHEC 2010, Woods Hole

TPC Polarimeter Concept

- Drift direction is perpendicular to X-ray propagation so that diffusion is independent of the active depth
- Image in a plane normal to the detector elements using strip readout
- Pixels are formed by time projection, coordinates [arrival time, strip location] ٠
- Drift height determined by collimation of beam •

Analysis and Results

- Histograms of reconstructed angles fit to expected functional form: N $(\phi) = A + B \cos^2(\phi - \phi_0)$ where ϕ_0 is the polarization phase
- The modulation is defined as: $\mu = (N_{max} - N_{min})/(N_{max} + N_{min})$
- Results:
 - It's a polarimeter
 - Uniform response
 - No false modulation
- Black et al. (2007) NIM A, 581, 755

Polarization Phase	Measured Parameters		
	Modulation (%)	Phase (degrees)	χ_{v}^{2}
unpolarized	0.49 ± 0.54	44.6 ± 28.7	1.2
0°	45.0 ± 1.1	0.3 ± 0.6	1.1
45°	45.3 ± 1.1	45.2 ± 0.6	1.0
90°	44.7 ± 1.1	-89.9 ± 0.6	1.4

IACHEC 2010, Woods Hole

Response to unpolarized X-rays

- Histograms of reconstructed angles for unpolarized data. 1.4 x 10⁶ cts over 40 ks
- ~60 "spacecraft rotations"
- measured modulation
 - Amplitude 0.05% +/- 0.12%
 - $\phi_0 = 20.9 + -73.9 \text{ deg}$
 - $\chi^2 = 1.05 / dof$

Gravity and Extreme Magnetism Small Explorer Concept

- The Time Projection Polarimeter is the heart of the Gravity and Extreme Magnetism Small Explorer
 - Currently in Phase B
 - Launch in 2014
- Rotation of three-axis stabilized spacecraft for low false modulation due to instrumental systematic error
- Full sky visibility; ~300 sources accessible, each for ~ 8 weeks every 6 months
- Straightforward operations concept
- 9 month program of 35 targets
 - Black Holes, Neutron Stars, SNR
- No consumables, lifetime ≥ 2 yr

Black holes

Neutron stars

Supernova remnants

Benefits of Rotation

- Simulations with 10^6 photons/run (μ ~ 0.5, MDP < 0.01) show the power of spacecraft rotation
- PROCEDURE
 - Generate photons
 - Move photon Efield into detector frame
 - Generate photoelectron direction with cos²(φ) distribution
 - Distort (by stretching) one axis
 - Measure the distorted direction
 - Map the photoelectron direction back onto the sky

RESULTS: Spacecraft rotation removes the effects of detector asymmetries

Calibration Needs

- Verification of Physical and Empirical models for
 - μ_{100} (E, x, y, z) good precision
 - μ_0 (E, x, y, z) high precision
 - $A_{eff}(E)$, efficiency (E), redistribution (E)
- Tools
 - At U. Iowa: collimated pencil beams
 - Unpolarized at 2.7 keV, 5-8 keV broad band
 - Polarized at 2.7, 3.7, 4.5, 6.4, 8.0 keV
 - Detector in vacuum
 - At GSFC: collimated and broad band beams
 - 5.9 keV from Fe⁵⁵
 - 2.7 and 4.5 keV
 - Detector in air
 - At BNL: collimated and polarized beam at "all" energies

2010 Activities

- Construction of Engineering Test Unit
 - Engineering tests
 - Performance tests
 - Uniformity
 - Sensitivity
 - Background rejection
- Construction of U. Iowa calibration beam line
 - ETU performance tests, procedure development
- GEMS SRR
 - Requirements development and documentation

GEM – ROB Hardware

framing

technique

GSE fixture to be used to trim excess LCP from frame after mounting.

ROB stretching procedure

ROB Prototype Frame and Bracket

Prototype GEM Assembly

4/13/10

ceramic board with wire bonding

ETU Hardware

