Handling Systematic Errors in the Effective Area

Herman L. Marshall, Dan Dewey (MIT) Jeremy Drake (SAO)

Background (see IACHEC 2007)

- Objective is to give meaning to "bad" fits
- HLM suggestion using Gaussian adjustments
- Not yet successful (x2 not close to I)
- Change Gaussians to spline method?
- JD method to use many EA models
- Works in the limited cases:
- parameter ranges no longer biased
- parameter error bars are larger
- Paper in progress

Taming χ^{2} (from DD)

- Data-model agreement given by:

$$
\chi=(D-M) / \operatorname{sigma}(D)
$$

and chi-squared $=\operatorname{sum}\left(\chi^{2}\right)$.

- Statistical error: sigma(D) ~ sqrt(D).
- Of course, sigma(D) would also include instrumental uncertainties on D...
- --> Even so, is that all there is to it ?

Science relevance

- --> There's also "science relevance" What sigma(D) is "acceptable" given the expected model fidelity ?
- Depends on analysis, but can be larger than instrumental uncertainties.
- Specifying and including science relevance can give science meaning to chi-squared values across data sets.

Science relevance in print

- " ... the quality of the fits is generally fair, with all but a few values of the χ^{2} per degree of freedom falling below 2. While not formally acceptable in a statistical sense, we consider it [scientifically] acceptable given that the model is simple and many of the spectra [contain] a few tens of thousands of counts or more."
- Hwang, Petre, and Flanagan 2008, ApJ 676, 378.

Science relevance in print

- " ... the quality of the fits is generally fair, with all but a few values of the χ^{2} per degree of freedom falling below 2. While not formally acceptable in a statistical sense, we consider it [scientifically] acceptable given that the model is simple and many of the spectra [contain] a few tens of thousands of counts or more."
- Hwang, Petre, and Flanagan 2008, ApJ 676, 378. What about when there are a million counts in an SNR spectrum ?

E0102: Chi vs D/M

- E0102 w/Suzaku, Eric Miller data
- Model fit is "unacceptable":
- $\chi^{2 / v} \sim 7.0$
- But D/M is within $\sim 10 \%$, not bad...

Relation of Chi and D/M

Science sigma

- Chi is a measure of the "certainty" of a difference -- not a measure of the "science relevance" of the difference.
- Modify sigma(D) to be given by: greater_of (sigma_sci*D, sqrt(D))
- Sigma_sci is a fractional error limit that encodes the science relevance.
- Generally appropriate for high dynamicrange data (e.g., if using a log-Y axis.)

Using modified Chi_sci

Using modified Chi_sci

E0102: Chi_sci and D/M

- Science sigma of 5\% used.
- Equiv. to 400 cour bin

"observation".

- " χ^{2} sci/v $\sim 1.8[5 \%$.
- Agrees better with ratio.

Summary

- Currently, data-model agreement is only set, fit, and expressed by statistics.
- For high-counts, high dynamic range data the χ^{2} can deviate from a measure of "scientific agreement of data and model."
- Using a "science sigma" fractional error limit can improve the meaningfulness and inter-comparison of χ^{2}.

