

Calibration Status of the *Suzaku* HXD (major updates since the previous meeting) M. Kawaharada (RIKEN) on behalf of the HXD team

PER ASPERA AD ASTRO-E2

2008/05/19 3rd IACHEC meeting @Schloss Ringberg, Germany

Hard X-ray Detector

64 PIN-Si diodes : 10-70 keV, dE~4keV(FWHM) 16 well-type phoswich (GSO) : 40-600 keV Wide-band All-sky Monitor (WAM) as a GRB detector

4 epochs defined by PIN bias voltages and lower energy threshold.

Epoch1 2005/8/17 – 2006/5/25 ; All 500V, ae_hxd_pinthr_20060727.fits

- Responses and NXBs are available for all the 64 PINs, regardless of the bias voltage.
- PIN lower energy cutoffs are optimized for each epoch.
- **GSO** NXBs are available for all the GO data.

PIN LD optimization

- In <10 keV, noise is gradually increasing probably due to the lattice defect in PIN diodes made by cosmic ray particles.
- The noise is cut by "hxdgrade" on the ground.
- Responses and NXBs are made to match this cut.
- Change of PIN LD (making another epoch) is discussed for recent obs.

Ver2 PIN NXB reproducibility

Suzakumemo-2007-09

- Each point is 10 ks in 15-40 keV.
- purple: data in period when bgd_d is recommended (2006-03-23 2006-05-13)

> average = -0.49%,
$$\sigma$$
=3.8% (σ_{stat} =2.0%)

Upcoming New PIN NXB (bgd_d)

- New PIN NXB (bgd_d) will be delivered soon (maybe in this month), along with suzakumemo.
- **Reproducibility is drastically improved.** $\sigma_{sys} = 1.2\%$ for earth data.
- However, reproducibility for dark sky data (no strong emission in XIS) is worse.
- Contamination of hard point sources in PIN FOV is suspected.
- PIN bgd_d will be delivered 1.5 month after the observation like GSO NXBs.
- Current version (bgd_a) will be also provided for quick analysis.

GSO NXB reproducibility

Suzakumemo-2008-01

- each point is 10 ks earth data in 50-100 keV and 100-200 keV.
- average = 0.1 and 0.1%,
- σ=0.75 and 0.69% (σ_{stat}=0.40 and 0.36%)
- σ_{svs} = 0.64 and 0.59%

 \succ Cross normalization PIN : GSO = 1: 0.80, and residual $\pm 10\%$.

We prepared fudge GSO arf file as,

C(E) = 1.36 * (E/100)^0.65 * exp(-E/230) @ XIS nominal

1.18 * (E/100)^0.55 * exp(-E/320) @ HXD nominal

SO arf just adjusts the GSO spectrum to fit the Crab with a single PL.

Energy (PMT charge) of activation lines are re-calculated. The corrected curve becomes consistent with the ground calibration.

- Improvement of GSO response is now going on.
- The new GSO response, together with new CALDB files and new GSO NXBs, will be delivered this summer (after 2008 July).
- > The empirical correction will not be needed, or at least become smaller.

Origin of PIN NXB

PIN NXB is dominated by a component which varies with COR.

- > PIN NXB cannot be fully explained by primary cosmic rays.
- Neutrons from the earth atmosphere is suspected to be the primal contributor.
- >PIN NXB may be further improved by monitoring the neutron flux.

Thank you (photo; 2004/04/30 HXD completed)

Absolute CXB Level

Summed spectrum of Cyg. LOOP multi-pointing data (240ks) vs. NXB model.
If Cyg. LOOP obs. is free from hard X-ray sources, this can be regarded as an absolute CXB level.

> The residual agrees with CXB spectrum by Boldt (1987).

Effect of atmospheric hard X-rays

If the result of imhof et al. is adopted, hard X-rays from atmosphere is ~ 1/3 of CXB, ~3% of NXB model.

Current NXB may be ~3% overestimated by this atmospheric emission.

Current Sensitivity

Calculated Sensitivity for point source (10 ks exp.)

>With relatively short (~10 ks) exposure, the HXD provides high sensitivity.

Crab; XIS and PIN and GSO

XISO: PIN: GSO = 1 : 1.12 : 1.07
NH = 0.33x10²², Γ = 2.10, Norm = 9.54, χ2/dof = 1.2
2-10 keV 2.12E-8 erg/s/cm2, 20-50 keV 9.92E-9 erg/s/cm2

Crab cross cal. (IACHEC 2007)

Satellite Det	Det	xsect	Abun	E-band for fit	<i>N</i> H 10 ²¹ cm ²	ph. Index	Norm (2-10) 10 ^{-s} erg/cm ² /s	χ2v	Observed Flux (10 ⁻⁸ erg/cm ² /s)			
									0.5-2	2-10	20-50	50-100
Suzaku	XIS	bcmc	wilm	1.0-10.0	4.61±0.10	2.070 ± 0.008	2.239±0.012	1.19	-	2.170	· -	-
			angr	1.0-10.0	3.19±0.07	2.077±0.008	2.244±0.012	1.19	-	2.169	-	5 23
	PIN		angr	12.0-70.0	3.19 (fixed)	2.110 ± 0.007	2.267±0.023	1.03	-	=	1.039	-
RXTE	HEXTE	bcmc	angr	20-240	3.19 (fixed)	2.087±0.008	1.929 ± 0.027	0.99	3 <u>-1</u> -1		0.928	0.657
XMM	pn	bcmc	angr	1.0-10.0	2.41-0.030.07	2.107+0.004 -0.009	1.876+0.003_0.006	1.31	8 <u>14</u> 8	1.827	_	
INTEGRA	SPI	bcmc	angr	22-100	3.19 (fixed)	2.123±0.014	±	0.7	-	-	1.04	0.73
RXTE	PCA			3-50	3.19 (fixed)	2.114	2.4018	2.63	-	2.320	1.09	-
Swift	BAT	bcmc	angr	30-100	3.19 (fixed)	2.10 ± 0.06	1.74±0.25	0.82	-	-	0.82	0.57

ASCA 2.16E-8 erg/s/cm2 2-10 keV Kushino et al. BeppoSAX 9.22E-9 erg/s/cm2 20-50 keV Frontera et al.

 $2.11 (\pm 0.01) 11.6 (+0.2,-0.3)$

 $2.11(\pm 0.01)$ 11.4 (±0.2)

 $2.09(\pm 0.01)$ 10.9(+0.3,-0.2)

 $2.11 (\pm 0.01) 11.0 (+0.2, -0.3)$

Epoch

1

1

2

3

XIS

HXD

XIS

HXD

constantfactor
$1.16(\pm 0.01)$
$1.15(\pm 0.01)$
$1.15(\pm 0.01)$
$1.11(\pm 0.01)$

79.6/89

63.6/83

99.3/94

95.1/81

GSO NXB

- GSO NXB is almost saturated to the expected level.
- Activation lines appears as expected, and are used for the energy calibraion.
- GSO NXB is provided 1.5 month after the observation.

Timing Calibration

 \rightarrow No problem at 33msec – 103 sec

P and P_dot (~4.12 \times 10¹³ s s⁻¹) consistent with Radio results

Simultaneous observation of Crab pulsar (20 March 2007)

WAM status

*** Summary (2005 Ag. -- 2007 Oct.) *** confirmed GRB 317 (194) possible GRB 223 (97) SGR 68 (6) Solar flare 166 (28)

Cross calibration with Konus/Wind, RHESSI, Swift BAT using GRB events and Solar flares

Please visit the WAM WWW page (http://www.astro.isas.ac.jp/suzaku/research/HXD-WAM/WAM-GRB/)

Calibration items

Table: Error Budgets of Scientific Instrument Calibrations							
Instrument	Calibration Item	Present Uncertainties (July 2007)	Requirement	Goal			
HXD	Absolute effective area	20%	20%	5%			
	Relative effective area	15%	10%	5%			
	Angular response	5%	10%	5%			
	<u>Background</u> modeling (PIN)	5~10%	10%	5%			
	<u>Background</u> modeling (GSO)	3%	10%	3%			
	Energy scale	1% (PIN)	***%	**%			
	Absolute timing	360 mu s	300 mu s	100 mu s			
	Relative timing	1.9x10 ⁻⁹	10 ⁻⁸	10 ⁻¹⁰			
HXD-WAM	GRB absolute timing	2 ms	1 ms	1 ms			
	Absolute effective area	10~40%, depending on the incident angle	20%	20%			

Warnings of HXD analysis

- PIN bgd_d of ver1.* can be used for 2006/03/** --2006/05/** data. This ver1.* PIN bgd_d has to be corrected for dead time by GOs.
- MJDREF keyword of PIN and GSO data was wrong. Exposures of data can be several 10 sec different from NXBs. This issue will be announced soon.
- An option of hxdgrade in 7 steps was wrong. hxd_** = 2.0 should be 2.1. The wrong psdcut reduces GSO flux by 2%. NXBs has been made by the correct option. This issue will be announced soon.
- GSO and PIN data of ver2.0 after 2007/7/28 have to be reprocessed by GOs.