eROSITA mirror calibration:

First measurements and future concept

PANTER instrument chamber set-up for XMM mirror calibration: 12 m length, 3.5 m diameter: 8 m to focal plane instrumentationnow: f = 1.6 m; cameras = PSPC, EPIC-pn, TRoPIC

eROSITA product tree of telescope FM

- telescope = 7 modules with 54 shells each + 7 cameras
 - telescope infrastructure
 - * optical bench
 - * cover and mechanism
 - * thermal control system
 - * baffle
 - mirror system
 - * mirrors
 - * structure
 - cameras
 - * camera housing
 - * CCD module
 - * electronics box
 - * electronics and software

eROSITA optics at PANTER: test objects

- telescope = 7 modules with 54 shells each + 7 cameras
- \bullet single shell 44/3 (ABRIXAS mandrel), ...
- single shell 46/1, 46/2, 46/8 (ABRIXAS mandrel)
- single shell 27/4 (MLT mandrel), ...
- single shell 1 (MLT mandrel): to be installed tomorrow
- single shell 2 (Zeiss mandrel): to be installed tomorrow
- DM (QM): shells 1 + 27
- FM1
- FM2, ..., FM7 (incl. cameras)
- end-to-end test

eROSITA optics at PANTER: test subjects (on-axis)

- delivery, visual inspection, installation
- optical alignment (laser)
- X-ray alignment (Burkert test)
- point spread function (HEW, W90) at various energies:
 - -large-scale (PSPC, e.g. scattering, micro-roughness)
 - small-scale (TRoPIC): "pixel scan": 20×20 (3.75 µm step) raster over 1 pixel to avoid split bias re-shift coordinates and merge exposures sub-pixel resolution via split event statistics
- single reflections: parabola entrance (mounting at spider), hyperbola entrance (close to mid-plane)
- out-of-focus rings (position, width, "pseudo-Hartmann" test)
- effective area at various energies (full illumination, "Glücksrad")
- gold edge, off-axis behaviour, contamination control, ...

eROSITA: mechanical interface (GSE)

Mounted onto rotate-tilt-stage for X-ray alignment and dedicated off-axis exposures

Michael Freyberg MPE Garching

Set-up at PANTER

Shell and finger spider before mounting of entrance aperture In the back: PSPC (right), TRoPIC (middle), EPIC-pn (partially covered)

Tube exit

In the back: exit of 123 m tube, with various aperture stops Distance source - mirror midplane: 130 m: maximum (full) divergence angle 9.5'

> Michael Freyberg MPE Garching

IACHEC 2008, Schloss Ringberg, 18-21 May 2008

7

eRO-27/4: alignment (PSPC)

out-of-focus off-axis single reflections (hyperbola, parabola)

eRO-27/4: alignment (PSPC): "on-axis" (combined image)

combined image: symmetric

eRO-27/4: out-of-focus (PSPC): on-axis

16 fingers of spider, zoomed image

eRO-27/4 PSF: TRoPIC: HEW = 25 (22.5) arcsec (Al-K)

Michael Freyberg MPE Garching

eRO-46/8 PSF: TRoPIC: HEW = 17 (14.7) arcsec (Al-K)

Michael Freyberg MPE Garching

eRO-46/8: towards sub-pixel resolution

randomize events within split area (i.e. where doubles, tripels etc. are generated) instead of within full pixel (like in XMM-SAS), this improves spatial resolution: HEW 17 arcsec \rightarrow 14.7 arcsec

eRO-46/2: single reflections (PSPC)

outer ring: hyperbola close to mid-plane

inner ring: parabola close to entrance

at higher energies: outer ring disappears due to large incidence angles

Michael Freyberg MPE Garching

eRO-46/8: single reflections (TRoPIC mosaic)

single reflection rings, out-of-time events, pile-up in PSF core

Michael Freyberg MPE Garching

Out-of-focus rings: position and width

Michael Freyberg MPE Garching

IACHEC 2008, Schloss Ringberg, 18-21 May 2008

16

Out-of-focus ring geometry: position and width

Shell	mid-plane radius	exit radius	distance	ring center	ring width
#	$r_{\rm m} \; [{\rm mm}]$	$r_{\rm u} \; [{\rm mm}]$	$s \; [\mathrm{mm}]$	$r_{\rm c} \; [{\rm mm}]$	$w \; [\mathrm{mm}]$
46	47.202	43.870	40	1.180	0.028
			125	3.686	0.088
			175	5.161	0.124
			200	5.898	0.141
			250	7.373	0.177
			400	11.796	0.283
27	81.943	76.160	40	2.048	0.049
			144.02	7.373	0.177
			250	12.799	0.307
1	174.184	161.906	40	4.353	0.105
			67.75	7.373	0.177
			250	27.208	0.655

focal plane instrumentation at PANTER: along optical axis: $\pm 250 \text{ mm}$ highest spatial resolution: TRoPIC: FOV 19.2 mm squared out-of-focus rings allow spatial location of "features"

eRO-46/2: out-of-focus rings + single reflections (PSPC)

intrafocal: parabola and hyperbola single reflections, double-reflection ring extrafocal: hyperbola and parabola and single reflections, double-reflection ring cross-sections of double-reflection ring, if sufficient spatial resolution: \rightarrow

eRO-46/2: out-of-focus rings (TRoPIC): data + theory

Michael Freyberg MPE Garching

eRO-46/2: -250, +200, -40, +40, -20, +20 mm out-of-focus

mirrored rings from intra-focal to extra-focal

Michael Freyberg MPE Garching

eRO-46/2: Pseudo-Hartmann test: in-focus prediction

interpolation of -250mm intrafocal and +200mm extrafocal images to focus position:

-2mm, -1mm intrafocal, 0mm, +0.5mm, +1mm, +2mm extrafocal

Michael Freyberg MPE Garching

eRO-27/4: effective areas

Michael Freyberg MPE Garching

eROSITA: effective areas via "Glücksrad"

put open mirror aperture parallel to incident beam any aperture from 0° to 45° (2 sectors) sum of sectors gives parallel beam effective area

eROSITA flight models

- FM1: according to schedule will be delivered prior to first camera FM
- FM1: calibrate extensively with TRoPIC
- FM1: mount X-ray baffle
- FM1: double crystal monochromator for gold edge (2.1 3 keV)
- \bullet FM1: calibrate afterwards with corresponding camera FM1
- focal length, determine effects of camera
- $\bullet \rightarrow pile-up, stray-light, \dots$
- FM2, ..., FM7 (incl. cameras)
- end-to-end test: only 1 3 modules in beam

eROSITA in-orbit calibration with cosmic sources: comments

- bright sources may saturate telemetry ("disk quota") (1 event per readout-cycle per camera): these limits depend on other payload and calibration agreements
- standard sources: N132D, Mkn421, PKS2155, 1E0102, Crab, Vela: XMM: 40 10000 cts/s
- background in LEO: fluorescent O-K line (532 eV) from scattered solar X-rays

eROSITA in-orbit calibration with cosmic sources: strategy ?

- observe source only with one (or more) camera active at the same time, and use other cameras with closed filter position
- give more (all ?) telemetry to eROSITA during calibration observations
- split telemetry for S-X-G cross-calibration observations
- calibration observations in survey mode
- surveys could be interrupted for pointed calibration observations (every 6 months for e.g. 2 days, dependent on target visibility)

