eROSITA Calibration

Spektr-Rentgen-Gamma (SRG) Спектр-рентген-гамма

eROSITA

XMM-Newton vs. eROSITA detectors

Project	XMM-Newton PN detector	eROSITA detectors
CCD production	1996-1998	2007-2008
Sens. thickness	300 μm	450 μm (QE: E>7keV)
pixel size	150 μm x 150 μm	75 μm x 75 μm (split events)
CCD front side	bare gates	gates coated
image area	35 cm ²	58 cm ²
pixel process. rate:	2.1 E6 pixel / s	20.6 E6 pixel / s
el. noise (rms)	5 e	2.5 e [_] (!)
CTI (6 keV)	5E-4	3E-5 (!) (CTI(t))
operating mode	full frame; OOT events: 6%	frame store; OOT: 4‰ (!)
#pixel transfers	1-200	385-768
Filter	choice: thin/medium/thick	on-chip
instr. background	several fluorescence lines	graded shield (B,C lines)
split events	mainly singles	mainly split events (up to 4 pix.)
E < 0.5 keV	poor spectroscopy	excellent spectroscopy (!)

18.02.2008, Schloß Ringberg

Norbert Meidinger, eROSITA CCD DETECTOR

eROSITA Ground Calibration

TRoPIC Calibration

Konrad Dennerl

eROSITA Calibration

CTI

CTI determination: Illustration of the Template Cross Correlation method (EPIC pn)

25 macro pixels,

20-29 singles per macro pixel

Figure 9. Illustration of the charge loss determination by the template cross correlation method, for the case of low (left) and high (right) statistical quality. In both cases the two columns show the results of template fits to spectra from selected macro pixels for the first (left) and last (right) iteration. The macro pixels are identified by filled circles in the resultant charge loss curves at top. In the case at left only 631 events were recorded within the whole CCD column, leaving only 20-29 events for each of the 25 macro pixels. At right, 17864 events were available in total, sufficient for appling this technique to each individual pixel. Note how significantly the presence of a noisy pixel reduces the charge loss for events which were shifted across this pixel during readout. In both cases $Mn-K_{\alpha}$ and K_{β} lines were analysed. (V9–74)

Konrad Dennerl

eROSITA Calibration

kod - pleta 1

eROSITA Calibration

kod - pleta 1

eROSITA Calibration

column number (RAWX)

Konrad Dennerl

eROSITA Calibration

CTI

dependence of the peak position on precursors

high trigger threshold (~150 adu) → precursors 'significant'

3.0 million events

Konrad Dennerl

eROSITA Calibration

HK070622.015

singles, x = 0..127

Konrad Dennerl

eROSITA Calibration

HK070622.015

singles, x = 0..127

Gain

Konrad Dennerl

input: 6 long flatfield exposures at B-K, C-K, Cu-L, Al-K, Cr-K, Cu-K

selection of all singles in the 20 CCD rows closest to the CAMEX

no corrections applied

peak positions determined separately for CAMEX-1 and CAMEX-2

Konrad Dennerl

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

Application of the cti and gain correction derived for singles

AI-K (1.486 keV)

HK071119.007 **AI-K** monochromator, NLL=0A00 (10s), SPLT=0028 (40a)

Konrad Dennerl

eROSITA Calibration

AI-K

Konrad Dennerl

eROSITA Calibration

AI-K

Konrad Dennerl

eROSITA Calibration

Schloss Ringberg, 2008 May 20

eROSITA Calibration

Konrad Dennerl

Application of the cti and gain correction derived for singles

Cu-K (8.040 keV)

Konrad Dennerl

eROSITA Calibration

high threshold (~130 adu) → overcorrection of doubles not due to noise collection

Konrad Dennerl

eROSITA Calibration

Konrad Dennerl

eROSITA Calibration

Konrad Dennerl

eROSITA Calibration

Application of the cti and gain correction derived for singles

Cr-K (5.410 keV)

Konrad Dennerl

eROSITA Calibration

Cr-K

adu

Konrad Dennerl

adu

eROSITA Calibration

adu

Cr-K

Konrad Dennerl

eROSITA Calibration
Cr-K

Konrad Dennerl

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

Konrad Dennerl

eROSITA/TRoPIC Gain Correction

→ Patterns cannot be corrected by any gain(E) function which is applied to their components individually, even if this function is made dependend on (x,y) and the pattern type.

→ If correction for singles is applied, then patterns become overcorrected, with the amount of overcorrection monotonically increasing with pattern size

What is the reason?

• why offset ?

why overcorrection for patterns ?

eROSITA Calibration

eROSITA/TRoPIC Gain Correction

• why offset ?

why overcorrection for patterns ?

- nonlinear amplification ?
- offset calculation ?
- common mode ?
- pileup with noise ?
- frame store ?
- partial events ?

Charge Loss due to Partial Events

eROSITA/TRoPIC Gain Correction

• why offset ?

why overcorrection for patterns ?

- nonlinear amplification ?
- offset calculation ?
- common mode ?
- pileup with noise ?
- frame store ?
- partial events ?
- threshold !

Low Energy Threshold

General consequences

data corrected with gain derived from singles

data set: HK070705.011 Macor, 15 kV, 4.2 V, EPIC-Filter, 5 Sigma, 20 adu

6.1 million events

Konrad Dennerl

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

kod - hksumt

Detector Calibration (Ground and Orbit)

Schloss Ringberg, 2008 Feb 19

Low Energy Threshold

Dependence of the peak position derived from singles on the low energy threshold

data corrected with gain derived from singles

data set: HK070705.011 Macor, 15 kV, 4.2 V, EPIC-Filter, 5 Sigma, 20 adu

6.1 million events

Konrad Dennerl

eROSITA Calibration

eROSITA Calibration

HK070705.011

Konrad Dennerl

eROSITA Calibration

Threshold Induced Charge Loss

Threshold Induced Charge Loss

Konrad Dennerl

eROSITA Calibration

eROSITA/TRoPIC Gain Correction

eROSITA / TRoPIC calibration

XMM-Newton / EPIC pn

deviations of the Al-K and Mn-K_a positions

Patterns, Borders, and Threshold Induced Charge Loss

Patterns, Borders, and Threshold Induced Charge Loss

Single: 4 borders correction for 4 borders

Double: 6 borders but: correction for 8 borders \rightarrow overcorrection: -6/8 + 8/8 = +2/8 = +0.25

Triple: 8 borders

but: correction for 12 borders

 \rightarrow overcorrection: -8/12 + 12/12 = +4/12 = +0.33

Quadruple: 8 borders

but: correction for 16 borders

 \rightarrow overcorrection: -8/16 + 16/16 = +8/16 = +0.50

 \rightarrow predicted overcorrections: d: t: q = 3: 4: 6

Cu-K:	
doubles:	+67 eV
triples:	+95 eV
quadruples:	+157 eV

ratios somewhat different for lower energies: partial event effect ?

eROSITA Calibration

Konrad Dennerl

eROSITA / TRoPIC calibration

eROSITA/TRoPIC Gain Correction

Implications for the gain correction algorithm for pn CCDs:

- apply first the "electronic" gain correction to all <u>events</u> (i.e., singles and pattern components)
- 2. recombine the events to photons
- 3. apply then the "cutoff" gain correction (depending on energy and pattern size) to all <u>photons</u> in order to recover the lost charge and to linearize/adjust the energy scale

 \rightarrow first results:

eROSITA Calibration

Konrad Dennerl

eROSITA Calibration

Schloss Ringberg, 2008 May 20

Konrad Dennerl

eROSITA Calibration

AI-K (1.486 keV)

Konrad Dennerl

eROSITA Calibration

eROSITA Calibration

eROSITA Calibration

Konrad Dennerl

eROSITA Calibration

Konrad Dennerl

eROSITA Calibration

Cu-K

Konrad Dennerl

eROSITA Calibration

Konrad Dennerl

eROSITA Calibration

Konrad Dennerl

eROSITA Calibration

Konrad Dennerl

eROSITA Calibration

Konrad Dennerl

eROSITA Calibration