Simbol-X: an Overview

Ringberg IACHEC Meeting, 20.5.2008

U. Briel

History and current context of the project

• Since 2001, discussions between French and Italian X-ray astronomers about a new X-ray mission in the 0.1–80 keV range.

- Programmatic contacts have been initiated between CNES and ASI.
 - ASI and CNES agree to perform a joint feasibility study (phase A) on a X-ray mission called Simbol–X.
 - MPE and IAATübingen were invited to contribute to Simbol–X Contribution: Low Energy Detector (LED)

• Large French and Italien Consortium, including: CEA/Saclay, APC/Paris, CESR/Toulouse, and INAF-OAB/Milano, INAF/Bolognia, INAF/Roma, INAF/Palermo

 Simbol—X will offer an improvement of over two orders of magnitude in sensitivity and a much better angular resolution compared to the instruments currently operating above 10 keV.

Summary of Simbol-X top-level scientific requirements	
Parameter	Requirement
Energy band:	$0.5 - \ge 80 \text{ keV}$
Field of view (at 30 keV):	≥ 12' (diameter)
On-axis effective area:	$\begin{array}{ll} \geq 100 \ {\rm cm}^2 & {\rm at} \ 0.5 \ {\rm keV} \\ \geq 1000 \ {\rm cm}^2 & {\rm at} \ 2 \ {\rm keV} \\ \geq 600 \ {\rm cm}^2 & {\rm at} \ 8 \ {\rm keV} \\ \geq 300 \ {\rm cm}^2 & {\rm at} \ 30 \ {\rm keV} \\ \geq 100 \ {\rm cm}^2 & {\rm at} \ 70 \ {\rm keV} \\ \geq 50 \ {\rm cm}^2 & {\rm at} \ 80 \ {\rm keV} \ ({\rm goal}) \end{array}$
Detectors background	< 2×10 ⁻⁴ cts s ⁻¹ cm ⁻² keV ⁻¹ HED < 3×10 ⁻⁴ cts s ⁻¹ cm ⁻² keV ⁻¹ LED
On-axis sensitivity	\leq 10 ⁻¹⁴ c.g.s.(~0.5 µCrab), 10-40 keV band, 3\sigma, 1Ms, power law spectrum with $\Gamma{=}1.6$
Line sensitivity at 68 keV	$\leq 3 \times 10^{-7}$ ph cm ⁻² s ⁻¹ , 30,1Ms (2 × 10 ⁻⁷ goal)
Angular resolution	≤ 20" <i>(HPD)</i> , E < 30 keV ≤ 40" <i>(HPD)</i> @ E = 60 keV (goal)
Spectral resolution	$E/\Delta E = 40-50$ at 6-10 keV $E/\Delta E = 50$ at 68 keV (goal)
Absolute timing accuracy	100 µs (50 µs goal)
Time resolution	50 µs
Absolute pointing reconstruction	~ 3" (radius, 90%) (2" goal)
Mission duration	 3 years including commissioning and calibrations (2 years of scientific program) + provision for a possible 2 year extension
Total number of pointings	> 1000 (first 3 years, nominal mission) 500 (during the possible 2 year mission extension)

The way to go: focus radiation with long focal length X-ray optics in one satellite and X-ray detectors in a second satellite, flying in formation

Mirror spacecraft

Detector spacecraft

Requirements on formation keeping:

_ 20 m

Position control within 1 cm³

Optics (OAB / Media Lario) G. Pareschi et al.

Parameters

- 100 shells (Ni, replicated from mandrels, XMM)
- focal length : 20 m
- max diameter : 70 cm
- shell thickness ~ 2-3 times less than XMM
- Pt/C multilayer (sputtering inside mirror shells)

Mirror Tests and Calibration in Neuried at the Panter Facility Modification of the Facility necessary

Detector payload

Designed to ensure low internal background and rejection of the cosmic diffuse background, with good spectro-imaging capabilities.

Background shielding

- Graded shield collimator, to block diffuse background (together with sky-shield on mirror spacecraft)
- Active anticoincidence shield, surrounding imaging detectors

Imaging detectors

- Two « sandwiched » systems, with a transition energy at 17 keV
- Both detectors are covering $8 \times 8 \text{ cm}^2$ with 625 μ m pixels
- Flexible read-out
- operating at moderately low temperature (~ -40°C)

Low Energy Detector (LED)

Peter Lechner, et. al HLL(PNsensor)/IAAT/MPE/TUD/FAU

- Detector: Silicon Drift Detector with DEPFET readout 128 x 128 pixel, pixel size 625 μm divided into 4 independent quadrants readout time 128 μs/frame in Fullframe mode (50 μs in Window mode) spectral resolution: < 150 eV at 6 keV
- Event Pre-Processor: One unit per quadrant
- One single cold redundant Interface Controller

LED quadrant test

SX-LED pixel 500 x 500 µm²

- sensitive area > 10 cm² •
- largest device since XMM-pnCCD •

LED quadrant test

energy spectrum from flat-field illumination

- 127 eV FWHM @ 5.9 keV (single pixel events)
- peak/background ratio 3.000:1

High Energy Detector (HED)

(O. Limousin, P. Ferrando, et al., CEA Saclay)

- array of 64 pixellated Cd(Zn)Te modules of 256 pixels each, 2 mm thick,
- each module ~ 1 cm² total area, four side buttable
- with integrated front-end ASICs.
- self trigger read-out.
- spectral resolution: ~ 1 keV at 60 keV

Schematic view of the two satellites with baffle, collimator and anti-coincidence counter (AC)

Detailed model of baffle, collimator, detectors and AC was basis for extensive Monte Carlo simulations of the background, using GEANT4 • done by R. Chipaux (CEA), **C. Tenzer (IAAT)** and M. Kuster (TUD)

Mission Implementation

- Launch date: in the middle of 2014
- Mission parameters are :
 - single launch, by Soyuz from Kourou
 - high elliptical 4 day orbit (~ 20,000 180,000 km)
 - mission duration: 3 years with provision for a 2 years extension

