PSR B1509-58

Monitoring with RXTE from 1996 to 2005

Katja Pottschmidt (UCSD)

May 2007

S. Suchy (UCSD), J. Wilms (FAU), S. Haney (UCSB)

R.E. Rothschild (UCSD)

Source

- current *RXTE*-PCA PCU 2 rate, 3–20 keV top layer: 14.5 counts/s (Crab 1800 counts/s)
- D~4.2 kpc
- *P*~150 ms
- unusually high P
- characteristic age ~1600 yr

Ginga (Kawai 93) CGRO (Ulmer 93, Matz 94, Kuiper 99) RXTE (Marsden 97, Rots 98) BeppoSax (Cusumano 01) Chandra (Yatsu 05, DeLaney 05) INTEGRAL (Forot 06)

RXTE Monitoring

- about 1 ObsID/month
- here: AO1–AO10
 1996–2005
- PCA calibration epochs 3–5
- average exposure
 2.7 ks → 4.1 ks in
 2001, for less PCUs
- HEXTE not rocking in epoch 3

30704: 6 ObsIDs offset 80803-01-07-01: no GoodXenon 90803-01-09-02: enhanced bkg 40704-01-09-00: short

RXTE: Timing & Early Spectra

Spectroscopy

Outline

- Pulse-phase-averaged
 - monitoring (PCA)
 - time-averaged (PCA+HEXTE)
- Pulse-phase-resolved (work in progress)
 - monitoring (PCA on-pulse)
 - time-averaged (PCA+HEXTE)

Goals

- determine source stability
- identify possible calibration effects
- most detailed phase-resolved analysis

Katja Pottschmidt (UCSD) PSR B1509-58

Rates

- 3-20 keV, top layer
- "faint" bkg subtracted
- version eMv20051128

all available PCUs

- <1999: 5 PCUs on</p>
- >1999: <5 PCUs on
- >2001: sub-ObsIDs, different # of PCUs

- on during all ObsIDs
- best calibrated
- gradual decrease, modeled in response

Rates

- 3-20 keV, top layer
- "faint" bkg subtracted
- version eMv20051128

all available PCUs

- <1999: 5 PCUs on</p>
- >1999: <5 PCUs on</p>
- >2001: sub-ObsIDs, different # of PCUs

- on during all ObsIDs
- best calibrated
- gradual decrease, modeled in response

Phase-Resolve

Spectral Model

- phabs*(power+gauss)
- 3-20 keV, "faint" bkg
- background as correction files
- no systematics, typical χ^2_{red} =0.7–0.8

all available PCUs

- **1** all parameters free (E_{Fe} , σ_{Fe} restricted), top layer
- 2 the same for all layers

PCU 2, top layer

- **1** all parameters free (E_{Fe} , σ_{Fe} restricted)
- **2** E_{Fe} =6.4 keV, σ_{Fe} =0.1
- 3 $N_{\rm H} = 0.6$

Standard2f Data Mode

Spectral Fit Parameters

(Absorbed) Flux Evolution

all available PCUs

- \sim 7% down since 2000
- clear drop at epoch 4/5 boundary
 ⇒ calibration effect

- no drop at epoch 4/5 boundary
- maybe gradual decline of ~2% since 2000 ⇒ calibration?
- use PCU 2 data for time-averaged and phase-resolved

(Absorbed) Flux Evolution

all available PCUs

- \sim 7% down since 2000
- clear drop at epoch 4/5 boundary
 ⇒ calibration effect

- no drop at epoch 4/5 boundary
- maybe gradual decline of ~2% since 2000 ⇒ calibration?
- use PCU 2 data for time-averaged and phase-resolved

Power Law Norm & N_H

Calibration effect visible in other parameters?

all available PCUs

- ~10% drop in power law normalization
- *N*_H increasingly difficult to determine

- no drop in power law normalization
 ⇒ why 2% flux drop?
- $N_{\rm H}$ constrained to $< 1.5 \times 10^{22} \, {\rm cm}^2$ only

Power Law Norm & N_H

Calibration effect visible in other parameters?

all available PCUs

- ~10% drop in power law normalization
- *N*_H increasingly difficult to determine

- no drop in power law normalization
 ⇒ why 2% flux drop?
- $N_{\rm H}$ constrained to $< 1.5 \times 10^{22} \, {\rm cm}^2$ only

Power Law Norm & N_H

Calibration effect visible in other parameters?

all available PCUs

- ~10% drop in power law normalization
- *N*_H increasingly difficult to determine

- no drop in power law normalization
 ⇒ why 2% flux drop?
- $N_{\rm H}$ constrained to $< 1.5 \times 10^{22} \, {\rm cm}^2$ only

Power Law Index

PCU 2

- 4–10 keV flux drop ⇔ marginally softer (norm @ 1 keV)
- Gaussian distribution with Γ=2.03, σ_Γ=0.05

all available PCUs

- no trend in Γ
- Gaussian distribution with Γ=2.02, σ_Γ=0.03

Phase-Resolved

Power Law Index

PCU 2

- 4–10 keV flux drop ⇔ marginally softer (norm @ 1 keV)
- Gaussian distribution with Γ=2.03, σ_Γ=0.05

all available PCUs

- no trend in Γ
- Gaussian distribution with Γ=2.02, σ_Γ=0.03

Phase-Resolved

Outlook

Power Law Index

Katja Pottschmidt (UCSD) PSR B1509-58

Iron Line

PCU₂

- E_{Fe} constrainable to 6-7 keV (uncertainties often peg)
- σ_{Fe} consistent with 0
- norm not consistent with 0
- norm stable and, especially for frozen E_{Fe} and σ_{Fe} , well constrained

Iron Line

- *E*_{Fe} constrainable to 6–7 keV (uncertainties often peg)
- σ_{Fe} consistent with 0
- norm not consistent with 0
- norm stable and, especially for *frozen* E_{Fe} and σ_{Fe} , well constrained

Long-Term Stability, PCU 2

Avg. Parameter	1996–1997	2004–2005
exposure [ks]	2.8±0.1	4.1±0.2
3–20 keV rate [cps]	$15.82{\pm}0.05$	14.53±0.04
4–10 keV flux $[10^{-11} \frac{\text{erg}}{\text{cm}^2 \text{s}}]$	9.92±0.04	9.71±0.02
N _H [10 ²² cm ⁻²]	0.54±0.09	0.30±0.07
Г	2.02±0.01	2.05±0.01
$A_{\Gamma} \ [10^{-2} rac{\mathrm{ph}}{\mathrm{keV cm}^2 \mathrm{s}} \ @ \ 1 \mathrm{keV}]$	$0.071 {\pm} 0.001$	$0.072{\pm}0.001$
bkg correction [%]	2±1	0.3±3
χ^{2}_{red}	$0.68{\pm}0.03$	$0.70{\pm}0.05$

Epoch-Averaged Spectra

- PCU 2 Top: 3–25 keV
 0.5% systematics
 epoch 5: Xe L edge
- HEXTE:
 - epoch 3: no bkg epoch 4: 20–100 keV epoch 5: 20–200 keV

Previous background model, fits will be redone.

Epoch-Averaged Spectra

- PCU 2 Top: 3–25 keV
 0.5% systematics
 epoch 5: Xe L edge
- HEXTE:
 - epoch 3: no bkg epoch 4: 20–100 keV epoch 5: 20–200 keV

Previous background model, fits will be redone.

Epoch-Averaged Parameters

Parameter	Epoch 3	Epoch 4	Epoch 5
exp. PCA/HEXTE [ks]	81.2/-	37.6/24.0	224.6/179.7
<i>Ν</i> _Η [10 ²² /cm ²] Γ	$\begin{array}{c} 0.60\substack{+0.09\\-0.1}\\ 2.02\substack{+0.01\\-0.01}\end{array}$	$\begin{array}{c} 0.59\substack{+0.17\\-0.28}\\ 2.03\substack{+0.02\\-0.02}\end{array}$	$\frac{0.39^{+0.09}_{-0.1}}{2.03^{+0.00}_{-0.01}}$
EW	74	77	83
$F_{4-10 \text{ keV}} [10^{-11} \frac{\text{erg}}{\text{cm}^2 \text{s}}]$	10.01	10.03	9.85
flux constant (HEXTE)	-	$0.84^{+0.04}_{-0.06}$	$0.84^{+0.02}_{-0.02}$
$\chi^2_{\rm red}/{ m dof}$	0.83/46	0.88/89	1.11/89

Extraction 2.0filter GoodXenon • rsp, bkg: seextract 1.5 • pha2 (Φ- & E-bins): Norm. Count Rate [cps] (ik)fasebin 5 ephemrides from 1.0 www.atnf.csiro.au ΔΦ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) 0.5 20802-01-02-00 PCU 2 Top Layer Examples Peak Off 1/ephemeris, random 0.0 0.0 0.5 1.0 1.5 2.0 3–40 keV. 0.05 Φ-bins Pulse Phase normalized to off-pulse

Extraction 2.0filter GoodXenon • rsp, bkg: seextract 1.5 • pha2 (Φ- & E-bins): Norm. Count Rate [cps] (ik)fasebin 5 ephemrides from 1.0 www.atnf.csiro.au ΔΦ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) 0.5 40704-01-10-00 PCU 2 Top Layer Examples Peak Off 1/ephemeris, random 0.0 0.0 0.5 1.0 1.5 2.0 3–40 keV. 0.05 Φ-bins Pulse Phase normalized to off-pulse

Extraction 2.0filter GoodXenon • rsp, bkg: seextract 1.5 • pha2 (Φ- & E-bins): Norm. Count Rate [cps] (ik)fasebin 5 ephemrides from 1.0 www.atnf.csiro.au ΔΦ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) 0.5 50705-01-10-00 PCU 2 Top Layer Examples Peak Off 0.0 0.0 0.5 1.0 1.5 2.0 Pulse Phase

- 1/ephemeris, random
- 3–40 keV. 0.05 Φ-bins normalized to off-pulse

Katja Pottschmidt (UCSD) PSR B1509-58

Extraction 2.0filter GoodXenon • rsp, bkg: seextract 1.5 • pha2 (Φ- & E-bins): Norm. Count Rate [cps] (ik)fasebin 5 ephemrides from 1.0 www.atnf.csiro.au ΔΦ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) 0.5 60703-01-09-00 PCU 2 Top Layer Examples Peak Off 1/ephemeris, random 0.0 0.0 0.5 1.0 1.5 2.0 3–40 keV. 0.05 Φ-bins Pulse Phase normalized to off-pulse

Extraction 2.0filter GoodXenon • rsp, bkg: seextract 1.5 • pha2 (Φ- & E-bins): Norm. Count Rate [cps] (ik)fasebin 5 ephemrides from 1.0 www.atnf.csiro.au ΔΦ: -0.05, 0., 0., 0.02, 0. offset from radio by 0.27 (Kawai et al., 1991) 0.5 90803-01-10-00 PCU 2 Top Layer Examples Peak Off 1/ephemeris, random 0.0 0.0 0.5 1.0 1.5 2.0 3–40 keV. 0.05 Φ-bins Pulse Phase normalized to off-pulse

Phase-Resolved

Pulse – Off-Pulse Fit

add sub-ObsIDs

Pulse – Off-Pulse Fit

add sub-ObsIDs

PSR B1509-58

Pulsed Rate & Flux Evolution

- rates less constrained, still overall declining
- F_{4-10 keV}: no trend F_{10-20 keV}: decline? (pulsed flux harder)
- 1996/1997–2004/2005 flux comparison: 3–5% decline

Average General Parameters

- $\chi^2_{\rm red} {=} 1.00 \pm 0.05$
- exposures: 1.02(4) ks ⇒1.52(7) ks

Pulsed Rate & Flux Evolution

- rates less constrained, still overall declining
- F_{4-10 keV}: no trend F_{10-20 keV}: decline? (pulsed flux harder)
- 1996/1997–2004/2005 flux comparison: 3–5% decline

Average General Parameters

- $\chi^2_{\rm red} = 1.00 \pm 0.05$
- exposures: 1.02(4) ks ⇒1.52(7) ks

Pulsed Rate & Flux Evolution

- rates less constrained, still overall declining
- F_{4-10 keV}: no trend F_{10-20 keV}: decline? (pulsed flux harder)
- 1996/1997–2004/2005 flux comparison: 3–5% decline

Average General Parameters

- $\chi^2_{\rm red}{=}1.00\pm0.05$
- exposures: 1.02(4) ks ⇒1.52(7) ks

Pulsed Component N_H & Γ

Comparison to phase-averaged

- average N_H ↑: (2 - 3)×10²² cm⁻² (mostly consist. with 0)
- harder, Gaussian distribution: $\Gamma=1.36$, $\sigma_{\Gamma}=0.11$

Consistent with previous time-averaged results: Kawai et al., '93: $N_{\rm H}$ \uparrow , Γ ~1.30(5) Rots et al., '98: $N_{\rm H}$ \uparrow , Γ ~1.35(1)

Pulsed Component N_H & Γ

Comparison to phase-averaged

- average N_H ↑: (2 - 3)×10²² cm⁻² (mostly consist. with 0)
- harder, Gaussian distribution: $\Gamma=1.36$, $\sigma_{\Gamma}=0.11$

Consistent with previous time-averaged results: Kawai et al., '93: $N_{\rm H}$, Γ ~1.30(5) Rots et al., '98: $N_{\rm H}$, Γ ~1.35(1)

Phase-Resolved

Epoch-Averaged Pulse Profiles

Phase-Resolved

Epoch-Averaged Pulse Profiles

Next Step

- phase-resolved spectroscopy for ΔΦ~0.03 bins
- highest resolution so far (?)

Pulse Phase

Epoch-Averaged Pulse Profiles

To Do

- revise PCA+HEXTE epoch averaged & phase-averaged spectra
- create HEXTE epoch averaged pulse profiles
- check energy dependence of the pulse profiles
- model PCA+HEXTE epoch averaged & phase-resolved spectra
- are the (calibration) trends $F \downarrow$, $\Gamma \uparrow$, $N_H \downarrow$ also visible in:
 - other PCUs individually?
 - other 0.01 Crab sources?

